1,152 research outputs found

    A systematic comparison of affective robot expression modalities

    Get PDF

    Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task

    Get PDF
    Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft

    Affect Recognition in Autism: a single case study on integrating a humanoid robot in a standard therapy.

    Get PDF
    Autism Spectrum Disorder (ASD) is a multifaceted developmental disorder that comprises a mixture of social impairments, with deficits in many areas including the theory of mind, imitation, and communication. Moreover, people with autism have difficulty in recognising and understanding emotional expressions. We are currently working on integrating a humanoid robot within the standard clinical treatment offered to children with ASD to support the therapists. In this article, using the A-B-A' single case design, we propose a robot-assisted affect recognition training and to present the results on the child’s progress during the five months of clinical experimentation. In the investigation, we tested the generalization of learning and the long-term maintenance of new skills via the NEPSY-II affection recognition sub-test. The results of this single case study suggest the feasibility and effectiveness of using a humanoid robot to assist with emotion recognition training in children with ASD

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Emoji as a Proxy of Emotional Communication

    Get PDF
    Nowadays, emoji plays a fundamental role in human computer-mediated communications, allowing the latter to convey body language, objects, symbols, or ideas in text messages using Unicode standardized pictographs and logographs. Emoji allows people expressing more “authentically” emotions and their personalities, by increasing the semantic content of visual messages. The relationship between language, emoji, and emotions is now being studied by several disciplines such as linguistics, psychology, natural language processing (NLP), and machine learning (ML). Particularly, the last two are employed for the automatic detection of emotions and personality traits, building emoji sentiment lexicons, as well as for conveying artificial agents with the ability of expressing emotions through emoji. In this chapter, we introduce the concept of emoji and review the main challenges in using these as a proxy of language and emotions, the ML, and NLP techniques used for classification and detection of emotions using emoji, and presenting new trends for the exploitation of discovered emotional patterns for robotic emotional communication

    Expressing Robot Personality through Talking Body Language

    Get PDF
    Social robots must master the nuances of human communication as a mean to convey an effective message and generate trust. It is well-known that non-verbal cues are very important in human interactions, and therefore a social robot should produce a body language coherent with its discourse. In this work, we report on a system that endows a humanoid robot with the ability to adapt its body language according to the sentiment of its speech. A combination of talking beat gestures with emotional cues such as eye lightings, body posture of voice intonation and volume permits a rich variety of behaviors. The developed approach is not purely reactive, and it easily allows to assign a kind of personality to the robot. We present several videos with the robot in two different scenarios, and showing discrete and histrionic personalities.This work has been partially supported by the Basque Government (IT900-16 and Elkartek 2018/00114), the Spanish Ministry of Economy and Competitiveness (RTI 2018-093337-B-100, MINECO/FEDER, EU)
    corecore