4,022 research outputs found

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images

    Get PDF
    This paper is aimed at creating extremely small and fast convolutional neural networks (CNN) for the problem of facial expression recognition (FER) from frontal face images. To this end, we employed the popular knowledge distillation (KD) method and identified two major shortcomings with its use: 1) a fine-grained grid search is needed for tuning the temperature hyperparameter and 2) to find the optimal size-accuracy balance, one needs to search for the final network size (or the compression rate). On the other hand, KD is proved to be useful for model compression for the FER problem, and we discovered that its effects gets more and more significant with the decreasing model size. In addition, we hypothesized that translation invariance achieved using max-pooling layers would not be useful for the FER problem as the expressions are sensitive to small, pixel-wise changes around the eye and the mouth. However, we have found an intriguing improvement on generalization when max-pooling is used. We conducted experiments on two widely-used FER datasets, CK+ and Oulu-CASIA. Our smallest model (MicroExpNet), obtained using knowledge distillation, is less than 1MB in size and works at 1851 frames per second on an Intel i7 CPU. Despite being less accurate than the state-of-the-art, MicroExpNet still provides significant insights for designing a microarchitecture for the FER problem.Comment: International Conference on Image Processing Theory, Tools and Applications (IPTA) 2019 camera ready version. Codes are available at: https://github.com/cuguilke/microexpne
    corecore