43,483 research outputs found

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain

    Assessing the Effectiveness of Automated Emotion Recognition in Adults and Children for Clinical Investigation

    Get PDF
    Recent success stories in automated object or face recognition, partly fuelled by deep learning artiļ¬cial neural network (ANN) architectures, has led to the advancement of biometric research platforms and, to some extent, the resurrection of Artiļ¬cial Intelligence (AI). In line with this general trend, inter-disciplinary approaches have taken place to automate the recognition of emotions in adults or children for the beneļ¬t of various applications such as identiļ¬cation of children emotions prior to a clinical investigation. Within this context, it turns out that automating emotion recognition is far from being straight forward with several challenges arising for both science(e.g., methodology underpinned by psychology) and technology (e.g., iMotions biometric research platform). In this paper, we present a methodology, experiment and interesting ļ¬ndings, which raise the following research questions for the recognition of emotions and attention in humans: a) adequacy of well-established techniques such as the International Affective Picture System (IAPS), b) adequacy of state-of-the-art biometric research platforms, c) the extent to which emotional responses may be different among children or adults. Our ļ¬ndings and ļ¬rst attempts to answer some of these research questions, are all based on a mixed sample of adults and children, who took part in the experiment resulting into a statistical analysis of numerous variables. These are related with, both automatically and interactively, captured responses of participants to a sample of IAPS pictures

    Time-delay neural network for continuous emotional dimension prediction from facial expression sequences

    Get PDF
    "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."Automatic continuous affective state prediction from naturalistic facial expression is a very challenging research topic but very important in human-computer interaction. One of the main challenges is modeling the dynamics that characterize naturalistic expressions. In this paper, a novel two-stage automatic system is proposed to continuously predict affective dimension values from facial expression videos. In the first stage, traditional regression methods are used to classify each individual video frame, while in the second stage, a Time-Delay Neural Network (TDNN) is proposed to model the temporal relationships between consecutive predictions. The two-stage approach separates the emotional state dynamics modeling from an individual emotional state prediction step based on input features. In doing so, the temporal information used by the TDNN is not biased by the high variability between features of consecutive frames and allows the network to more easily exploit the slow changing dynamics between emotional states. The system was fully tested and evaluated on three different facial expression video datasets. Our experimental results demonstrate that the use of a two-stage approach combined with the TDNN to take into account previously classified frames significantly improves the overall performance of continuous emotional state estimation in naturalistic facial expressions. The proposed approach has won the affect recognition sub-challenge of the third international Audio/Visual Emotion Recognition Challenge (AVEC2013)1

    Dimensional Affect and Expression in Natural and Mediated Interaction

    Full text link
    There is a perceived controversy as to whether the cognitive representation of affect is better modelled using a dimensional or categorical theory. This paper first suggests that these views are, in fact, compatible. The paper then discusses this theme and related issues in reference to a commonly stated application domain of research on human affect and expression: human computer interaction (HCI). The novel suggestion here is that a more realistic framing of studies of human affect in expression with reference to HCI and, particularly HCHI (Human-Computer-Human Interaction) entails some re-formulation of the approach to the basic phenomena themselves. This theme is illustrated with several examples from several recent research projects.Comment: Invited article presented at the 23rd Annual Meeting of the International Society for Psychophysics, Tokyo, Japan, 20-23 October, 2007, Proceedings of Fechner Day vol. 23 (2007

    Time-Efficient Hybrid Approach for Facial Expression Recognition

    Get PDF
    Facial expression recognition is an emerging research area for improving human and computer interaction. This research plays a significant role in the field of social communication, commercial enterprise, law enforcement, and other computer interactions. In this paper, we propose a time-efficient hybrid design for facial expression recognition, combining image pre-processing steps and different Convolutional Neural Network (CNN) structures providing better accuracy and greatly improved training time. We are predicting seven basic emotions of human faces: sadness, happiness, disgust, anger, fear, surprise and neutral. The model performs well regarding challenging facial expression recognition where the emotion expressed could be one of several due to their quite similar facial characteristics such as anger, disgust, and sadness. The experiment to test the model was conducted across multiple databases and different facial orientations, and to the best of our knowledge, the model provided an accuracy of about 89.58% for KDEF dataset, 100% accuracy for JAFFE dataset and 71.975% accuracy for combined (KDEF + JAFFE + SFEW) dataset across these different scenarios. Performance evaluation was done by cross-validation techniques to avoid bias towards a specific set of images from a database

    Automatic Measurement of Affect in Dimensional and Continuous Spaces: Why, What, and How?

    Get PDF
    This paper aims to give a brief overview of the current state-of-the-art in automatic measurement of affect signals in dimensional and continuous spaces (a continuous scale from -1 to +1) by seeking answers to the following questions: i) why has the field shifted towards dimensional and continuous interpretations of affective displays recorded in real-world settings? ii) what are the affect dimensions used, and the affect signals measured? and iii) how has the current automatic measurement technology been developed, and how can we advance the field
    • ā€¦
    corecore