2,209 research outputs found

    FER Based on Fusion Features of CS-LSMP

    Get PDF
    Local feature descriptors play a fundamental and important role in facial expression recognition. This paper presents a new descriptor, Center-Symmetric Local Signal Magnitude Pattern (CS-LSMP), which is used for extracting texture features from facial images. CS-LSMP operator takes signal and magnitude information of local regions into account compared to conventional LBP-based operators. Additionally, due to the limitation of single feature extraction method and in order to make full advantages of different features, this paper employs CS-LSMP operator to extract features from Orientational Magnitude Feature Maps (OMFMs), Positive-and-Negative Magnitude Feature Maps (PNMFMs), Gabor Feature Maps (GFMs) and facial patches (eyebrows-eyes, mouths) for obtaining fused features. Unlike HOG, which only retains horizontal and vertical magnitudes, our work generates Orientational Magnitude Feature Maps (OMFMs) by expanding multi-orientations. This paper build two distinct feature maps by dividing local magnitudes into two groups, i.e., positive and negative magnitude feature maps. The generated Gabor Feature Maps (GFMs) are also grouped to reduce the computational complexity. Experiments on the JAFFE and CK+ facial expression datasets showed that the proposed framework achieved significant improvement and outperformed some state-of-the-art methods

    Neighborhood Defined Feature Selection Strategy for Improved Face Recognition in Different Sensor Modalitie

    Get PDF
    A novel feature selection strategy for improved face recognition in images with variations due to illumination conditions, facial expressions, and partial occlusions is presented in this dissertation. A hybrid face recognition system that uses feature maps of phase congruency and modular kernel spaces is developed. Phase congruency provides a measure that is independent of the overall magnitude of a signal, making it invariant to variations in image illumination and contrast. A novel modular kernel spaces approach is developed and implemented on the phase congruency feature maps. Smaller sub-regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are then projected into higher dimensional spaces using kernel methods. The unique modularization procedure developed in this research takes into consideration that the facial variations in a real world scenario are confined to local regions. The additional pixel dependencies that are considered based on their importance help in providing additional information for classification. This procedure also helps in robust localization of the variations, further improving classification accuracy. The effectiveness of the new feature selection strategy has been demonstrated by employing it in two specific applications via face authentication in low resolution cameras and face recognition using multiple sensors (visible and infrared). The face authentication system uses low quality images captured by a web camera. The optical sensor of the web camera is very sensitive to environmental illumination variations. It is observed that the feature selection policy overcomes the facial and environmental variations. A methodology based on multiple training images and clustering is also incorporated to overcome the additional challenges of computational efficiency and the subject\u27s non involvement. A multi-sensor image fusion based face recognition methodology that uses the proposed feature selection technique is presented in this dissertation. Research studies have indicated that complementary information from different sensors helps in improving the recognition accuracy compared to individual modalities. A decision level fusion methodology is also developed which provides better performance compared to individual as well as data level fusion modalities. The new decision level fusion technique is also robust to registration discrepancies, which is a very important factor in operational scenarios. Research work is progressing to use the new face recognition technique in multi-view images by employing independent systems for separate views and integrating the results with an appropriate voting procedure

    Facial expression recognition with emotion-based feature fusion

    Full text link
    © 2015 Asia-Pacific Signal and Information Processing Association. In this paper, we propose an emotion-based feature fusion method using the Discriminant-Analysis of Canonical Correlations (DCC) for facial expression recognition. There have been many image features or descriptors proposed for facial expression recognition. For the different features, they may be more accurate for the recognition of different expressions. In our proposed method, four effective descriptors for facial expression representation, namely Local Binary Pattern (LBP), Local Phase Quantization (LPQ), Weber Local Descriptor (WLD), and Pyramid of Histogram of Oriented Gradients (PHOG), are considered. Supervised Locality Preserving Projection (SLPP) is applied to the respective features for dimensionality reduction and manifold learning. Experiments show that descriptors are also sensitive to the conditions of images, such as race, lighting, pose, etc. Thus, an adaptive descriptor selection algorithm is proposed, which determines the best two features for each expression class on a given training set. These two features are fused, so as to achieve a higher recognition rate for each expression. In our experiments, the JAFFE and BAUM-2 databases are used, and experiment results show that the descriptor selection step increases the recognition rate up to 2%

    Towards better performance: phase congruency based face recognition

    Get PDF
    Phase congruency is an edge detector and measurement of the significant feature in the image. It is a robust method against contrast and illumination variation. In this paper, two novel techniques are introduced for developing alow-cost human identification system based on face recognition. Firstly, the valuable phase congruency features, the gradient-edges and their associate dangles are utilized separately for classifying 130 subjects taken from three face databases with the motivation of eliminating the feature extraction phase. By doing this, the complexity can be significantly reduced. Secondly, the training process is modified when a new technique, called averaging-vectors is developed to accelerate the training process and minimizes the matching time to the lowest value. However, for more comparison and accurate evaluation,three competitive classifiers:  Euclidean distance (ED),cosine distance (CD), and Manhattan distance (MD) are considered in this work. The system performance is very competitive and acceptable, where the experimental  results show promising recognition rates with a reasonable matching time

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Homogeneous and Heterogeneous Face Recognition: Enhancing, Encoding and Matching for Practical Applications

    Get PDF
    Face Recognition is the automatic processing of face images with the purpose to recognize individuals. Recognition task becomes especially challenging in surveillance applications, where images are acquired from a long range in the presence of difficult environments. Short Wave Infrared (SWIR) is an emerging imaging modality that is able to produce clear long range images in difficult environments or during night time. Despite the benefits of the SWIR technology, matching SWIR images against a gallery of visible images presents a challenge, since the photometric properties of the images in the two spectral bands are highly distinct.;In this dissertation, we describe a cross spectral matching method that encodes magnitude and phase of multi-spectral face images filtered with a bank of Gabor filters. The magnitude of filtered images is encoded with Simplified Weber Local Descriptor (SWLD) and Local Binary Pattern (LBP) operators. The phase is encoded with Generalized Local Binary Pattern (GLBP) operator. Encoded multi-spectral images are mapped into a histogram representation and cross matched by applying symmetric Kullback-Leibler distance. Performance of the developed algorithm is demonstrated on TINDERS database that contains long range SWIR and color images acquired at a distance of 2, 50, and 106 meters.;Apart from long acquisition range, other variations and distortions such as pose variation, motion and out of focus blur, and uneven illumination may be observed in multispectral face images. Recognition performance of the face recognition matcher can be greatly affected by these distortions. It is important, therefore, to ensure that matching is performed on high quality images. Poor quality images have to be either enhanced or discarded. This dissertation addresses the problem of selecting good quality samples.;The last chapters of the dissertation suggest a number of modifications applied to the cross spectral matching algorithm for matching low resolution color images in near-real time. We show that the method that encodes the magnitude of Gabor filtered images with the SWLD operator guarantees high recognition rates. The modified method (Gabor-SWLD) is adopted in a camera network set up where cameras acquire several views of the same individual. The designed algorithm and software are fully automated and optimized to perform recognition in near-real time. We evaluate the recognition performance and the processing time of the method on a small dataset collected at WVU
    corecore