29,977 research outputs found

    Investigating facial animation production through artistic inquiry

    Get PDF
    Studies into dynamic facial expressions tend to make use of experimental methods based on objectively manipulated stimuli. New techniques for displaying increasingly realistic facial movement and methods of measuring observer responses are typical of computer animation and psychology facial expression research. However, few projects focus on the artistic nature of performance production. Instead, most concentrate on the naturalistic appearance of posed or acted expressions. In this paper, the authors discuss a method for exploring the creative process of emotional facial expression animation, and ask whether anything can be learned about authentic dynamic expressions through artistic inquiry

    A Platform Independent Architecture for Virtual Characters and Avatars

    Get PDF
    We have developed a Platform Independent Architecture for Virtual Characters and Avatars (PIAVCA), a character animation system that aims to be independent of any underlying graphics framework and so be easily portable. PIAVCA supports body animation based on a skeletal representation and facial animation based on morph targets

    Capture, Learning, and Synthesis of 3D Speaking Styles

    Full text link
    Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input - even speech in languages other than English - and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.Comment: To appear in CVPR 201

    FEAFA: A Well-Annotated Dataset for Facial Expression Analysis and 3D Facial Animation

    Full text link
    Facial expression analysis based on machine learning requires large number of well-annotated data to reflect different changes in facial motion. Publicly available datasets truly help to accelerate research in this area by providing a benchmark resource, but all of these datasets, to the best of our knowledge, are limited to rough annotations for action units, including only their absence, presence, or a five-level intensity according to the Facial Action Coding System. To meet the need for videos labeled in great detail, we present a well-annotated dataset named FEAFA for Facial Expression Analysis and 3D Facial Animation. One hundred and twenty-two participants, including children, young adults and elderly people, were recorded in real-world conditions. In addition, 99,356 frames were manually labeled using Expression Quantitative Tool developed by us to quantify 9 symmetrical FACS action units, 10 asymmetrical (unilateral) FACS action units, 2 symmetrical FACS action descriptors and 2 asymmetrical FACS action descriptors, and each action unit or action descriptor is well-annotated with a floating point number between 0 and 1. To provide a baseline for use in future research, a benchmark for the regression of action unit values based on Convolutional Neural Networks are presented. We also demonstrate the potential of our FEAFA dataset for 3D facial animation. Almost all state-of-the-art algorithms for facial animation are achieved based on 3D face reconstruction. We hence propose a novel method that drives virtual characters only based on action unit value regression of the 2D video frames of source actors.Comment: 9 pages, 7 figure

    A practice-led approach to facial animation research

    Get PDF
    In facial expression research, it is well established that certain emotional expressions are universally recognized. Studies into the observer perception of dynamic expressions have built upon this research by highlighting the importance of particular facial regions, timings, and temporal configurations to perception and interpretation. In many studies, the stimuli for such studies have been generated through posing by non-experts or performances by trained actors. However, skilled character animators are capable of crafting recognizable, believable emotional facial expressions as a part of their professional practice. ‘Emotional Avatars’ was conceived as an interdisciplinary research project which would draw upon the knowledge of animation practice and emotional psychology. The aim of the project was to jointly investigate the artistic generation and observer perception of emotional expression animation to determine whether the nuances of emotional facial expression could be artistically choreographed to enhance audience interpretation

    Improving Facial Analysis and Performance Driven Animation through Disentangling Identity and Expression

    Full text link
    We present techniques for improving performance driven facial animation, emotion recognition, and facial key-point or landmark prediction using learned identity invariant representations. Established approaches to these problems can work well if sufficient examples and labels for a particular identity are available and factors of variation are highly controlled. However, labeled examples of facial expressions, emotions and key-points for new individuals are difficult and costly to obtain. In this paper we improve the ability of techniques to generalize to new and unseen individuals by explicitly modeling previously seen variations related to identity and expression. We use a weakly-supervised approach in which identity labels are used to learn the different factors of variation linked to identity separately from factors related to expression. We show how probabilistic modeling of these sources of variation allows one to learn identity-invariant representations for expressions which can then be used to identity-normalize various procedures for facial expression analysis and animation control. We also show how to extend the widely used techniques of active appearance models and constrained local models through replacing the underlying point distribution models which are typically constructed using principal component analysis with identity-expression factorized representations. We present a wide variety of experiments in which we consistently improve performance on emotion recognition, markerless performance-driven facial animation and facial key-point tracking.Comment: to appear in Image and Vision Computing Journal (IMAVIS
    • …
    corecore