5,541 research outputs found

    Predicting the Next Best View for 3D Mesh Refinement

    Full text link
    3D reconstruction is a core task in many applications such as robot navigation or sites inspections. Finding the best poses to capture part of the scene is one of the most challenging topic that goes under the name of Next Best View. Recently, many volumetric methods have been proposed; they choose the Next Best View by reasoning over a 3D voxelized space and by finding which pose minimizes the uncertainty decoded into the voxels. Such methods are effective, but they do not scale well since the underlaying representation requires a huge amount of memory. In this paper we propose a novel mesh-based approach which focuses on the worst reconstructed region of the environment mesh. We define a photo-consistent index to evaluate the 3D mesh accuracy, and an energy function over the worst regions of the mesh which takes into account the mutual parallax with respect to the previous cameras, the angle of incidence of the viewing ray to the surface and the visibility of the region. We test our approach over a well known dataset and achieve state-of-the-art results.Comment: 13 pages, 5 figures, to be published in IAS-1

    Towards a Theory Grounded Theory of Language

    Get PDF
    In this paper, we build upon the idea of theory grounding and propose one specific form of theory grounding, a theory of language. Theory grounding is the idea that we can imbue our embodied artificially intelligent systems with theories by modeling the way humans, and specifically young children, develop skills with theories. Modeling theory development promises to increase the conceptual and behavioral flexibility of these systems. An example of theory development in children is the social understanding referred to as “theory of mind.” Language is a natural task for theory grounding because it is vital in symbolic skills and apparently necessary in developing theories. Word learning, and specifically developing a concept of words, is proposed as the first step in a theory grounded theory of language

    Collaborative Robotic Path Planning for Industrial Spraying Operations on Complex Geometries

    Get PDF
    Implementation of automated robotic solutions for complex tasks currently faces a few major hurdles. For instance, lack of effective sensing and task variability – especially in high-mix/low-volume processes – creates too much uncertainty to reliably hard-code a robotic work cell. Current collaborative frameworks generally focus on integrating the sensing required for a physically collaborative implementation. While this paradigm has proven effective for mitigating uncertainty by mixing human cognitive function and fine motor skills with robotic strength and repeatability, there are many instances where physical interaction is impractical but human reasoning and task knowledge is still needed. The proposed framework consists of key modules such as a path planner, path simulator, and result simulator. An integrated user interface facilitates the operator to interact with these modules and edit the path plan before ultimately approving the task for automatic execution by a manipulator that need not be collaborative. Application of the collaborative framework is illustrated for a pressure washing task in a remanufacturing environment that requires one-off path planning for each part. The framework can also be applied to various other tasks, such as spray-painting, sandblasting, deburring, grinding, and shot peening. Specifically, automated path planning for industrial spraying operations offers the potential to automate surface preparation and coating in such environments. Autonomous spray path planners in the literature have been limited to generally continuous and convex surfaces, which is not true of most real parts. There is a need for planners that consistently handle concavities and discontinuities, such as sharp corners, holes, protrusions or other surface abnormalities when building a path. The path planner uses a slicing-based method to generate path trajectories. It identifies and quantifies the importance of concavities and surface abnormalities and whether they should be considered in the path plan by comparing the true part geometry to the convex hull path. If necessary, the path is then adapted by adjusting the movement speed or offset distance at individual points along the path. Which adaptive method is more effective and the trade-offs associated with adapting the path are also considered in the development of the path planner

    Puzzle games: a metaphor for computational thinking

    Get PDF

    What Would You Ask to Your Home if It Were Intelligent? Exploring User Expectations about Next-Generation Homes

    Get PDF
    Ambient Intelligence (AmI) research is giving birth to a multitude of futuristic home scenarios and applications; however a clear discrepancy between current installations and research-level designs can be easily noticed. Whether this gap is due to the natural distance between research and engineered applications or to mismatching of needs and solutions remains to be understood. This paper discusses the results of a survey about user expectations with respect to intelligent homes. Starting from a very simple and open question about what users would ask to their intelligent homes, we derived user perceptions about what intelligent homes can do, and we analyzed to what extent current research solutions, as well as commercially available systems, address these emerging needs. Interestingly, most user concerns about smart homes involve comfort and household tasks and most of them can be currently addressed by existing commercial systems, or by suitable combinations of them. A clear trend emerges from the poll findings: the technical gap between user expectations and current solutions is actually narrower and easier to bridge than it may appear, but users perceive this gap as wide and limiting, thus requiring the AmI community to establish a more effective communication with final users, with an increased attention to real-world deploymen

    Robots as Powerful Allies for the Study of Embodied Cognition from the Bottom Up

    Get PDF
    A large body of compelling evidence has been accumulated demonstrating that embodiment – the agent’s physical setup, including its shape, materials, sensors and actuators – is constitutive for any form of cognition and as a consequence, models of cognition need to be embodied. In contrast to methods from empirical sciences to study cognition, robots can be freely manipulated and virtually all key variables of their embodiment and control programs can be systematically varied. As such, they provide an extremely powerful tool of investigation. We present a robotic bottom-up or developmental approach, focusing on three stages: (a) low-level behaviors like walking and reflexes, (b) learning regularities in sensorimotor spaces, and (c) human-like cognition. We also show that robotic based research is not only a productive path to deepening our understanding of cognition, but that robots can strongly benefit from human-like cognition in order to become more autonomous, robust, resilient, and safe

    Cyborgs as Frontline Service Employees: A Research Agenda

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Purpose This paper identifies and explores potential applications of cyborgian technologies within service contexts and how service providers may leverage the integration of cyborgian service actors into their service proposition. In doing so, the paper proposes a new category of ‘melded’ frontline service employees (FLEs), where advanced technologies become embodied within human actors. The paper presents potential opportunities and challenges that may arise through cyborg technological advancements and proposes a future research agenda related to these. Design/methodology This study draws on literature in the fields of services management, Artificial Intelligence [AI], robotics, Intelligence Augmentation [IA] and Human Intelligence [HIs] to conceptualise potential cyborgian applications. Findings The paper examines how cyborg bio- and psychophysical characteristics may significantly differentiate the nature of service interactions from traditional ‘unenhanced’ service interactions. In doing so, we propose ‘melding’ as a conceptual category of technological impact on FLEs. This category reflects the embodiment of emergent technologies not previously captured within existing literature on cyborgs. We examine how traditional roles of FLEs will be potentially impacted by the integration of emergent cyborg technologies, such as neural interfaces and implants, into service contexts before outlining future research directions related to these, specifically highlighting the range of ethical considerations. Originality/Value Service interactions with cyborg FLEs represent a new context for examining the potential impact of cyborgs. This paper explores how technological advancements will alter the individual capacities of humans to enable such employees to intuitively and empathetically create solutions to complex service challenges. In doing so, we augment the extant literature on cyborgs, such as the body hacking movement. The paper also outlines a research agenda to address the potential consequences of cyborgian integration
    • 

    corecore