7,245 research outputs found

    LiveCap: Real-time Human Performance Capture from Monocular Video

    Full text link
    We present the first real-time human performance capture approach that reconstructs dense, space-time coherent deforming geometry of entire humans in general everyday clothing from just a single RGB video. We propose a novel two-stage analysis-by-synthesis optimization whose formulation and implementation are designed for high performance. In the first stage, a skinned template model is jointly fitted to background subtracted input video, 2D and 3D skeleton joint positions found using a deep neural network, and a set of sparse facial landmark detections. In the second stage, dense non-rigid 3D deformations of skin and even loose apparel are captured based on a novel real-time capable algorithm for non-rigid tracking using dense photometric and silhouette constraints. Our novel energy formulation leverages automatically identified material regions on the template to model the differing non-rigid deformation behavior of skin and apparel. The two resulting non-linear optimization problems per-frame are solved with specially-tailored data-parallel Gauss-Newton solvers. In order to achieve real-time performance of over 25Hz, we design a pipelined parallel architecture using the CPU and two commodity GPUs. Our method is the first real-time monocular approach for full-body performance capture. Our method yields comparable accuracy with off-line performance capture techniques, while being orders of magnitude faster

    Do-It-Yourself Single Camera 3D Pointer Input Device

    Full text link
    We present a new algorithm for single camera 3D reconstruction, or 3D input for human-computer interfaces, based on precise tracking of an elongated object, such as a pen, having a pattern of colored bands. To configure the system, the user provides no more than one labelled image of a handmade pointer, measurements of its colored bands, and the camera's pinhole projection matrix. Other systems are of much higher cost and complexity, requiring combinations of multiple cameras, stereocameras, and pointers with sensors and lights. Instead of relying on information from multiple devices, we examine our single view more closely, integrating geometric and appearance constraints to robustly track the pointer in the presence of occlusion and distractor objects. By probing objects of known geometry with the pointer, we demonstrate acceptable accuracy of 3D localization.Comment: 8 pages, 6 figures, 2018 15th Conference on Computer and Robot Visio

    Automatic facial analysis for objective assessment of facial paralysis

    Get PDF
    Facial Paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann Scale. Experiments show the Radial Basis Function (RBF) Neural Network to have superior performance

    An Improved Fatigue Detection System Based on Behavioral Characteristics of Driver

    Full text link
    In recent years, road accidents have increased significantly. One of the major reasons for these accidents, as reported is driver fatigue. Due to continuous and longtime driving, the driver gets exhausted and drowsy which may lead to an accident. Therefore, there is a need for a system to measure the fatigue level of driver and alert him when he/she feels drowsy to avoid accidents. Thus, we propose a system which comprises of a camera installed on the car dashboard. The camera detect the driver's face and observe the alteration in its facial features and uses these features to observe the fatigue level. Facial features include eyes and mouth. Principle Component Analysis is thus implemented to reduce the features while minimizing the amount of information lost. The parameters thus obtained are processed through Support Vector Classifier for classifying the fatigue level. After that classifier output is sent to the alert unit.Comment: 4 pages, 2 figures, edited version of published paper in IEEE ICITE 201

    Support Vector Machines in a real time tracking architecture

    Get PDF
    The standard approach to tracking an object of interest in a video stream is to use an object detector, a classifier and a tracker in sequential order. This work investigates the use of Support Vector Machines (SVM) as classifiers for real-time tracking systems, combining them with Kalman Filter predictors. Support Vector Machines have been proved successful in a variety of classification tasks such as recognizing faces, cars, handwriting and others. However their use has been hampered by the complexity and computational time involved in the training and classification stages. In recent years new methods and techniques for training and classification of Support Vector Machines have been discovered making possible their utilization in real-time applications. These methods have been explored and improved resulting in a framework for fast prototyping and development of real-time tracking systems. New optimal and sub-optimal methods for parallel SVM training based on biased and unbiased versions of the Sequential Minimal Optimization algorithm are presented. They provide a trade-off between time performance and accuracy. Time performance in the classification stage is significantly improved by reducing the number of support vectors with almost no loss in accuracy. New methods to allow the reduction with different kernels are presented. The effectiveness of the approach developed is demonstrated in a face tracking problem where the objective is to track the lips and eyes of a subject in a video stream in real-time
    • …
    corecore