2,015 research outputs found

    Interpretable Transformations with Encoder-Decoder Networks

    Full text link
    Deep feature spaces have the capacity to encode complex transformations of their input data. However, understanding the relative feature-space relationship between two transformed encoded images is difficult. For instance, what is the relative feature space relationship between two rotated images? What is decoded when we interpolate in feature space? Ideally, we want to disentangle confounding factors, such as pose, appearance, and illumination, from object identity. Disentangling these is difficult because they interact in very nonlinear ways. We propose a simple method to construct a deep feature space, with explicitly disentangled representations of several known transformations. A person or algorithm can then manipulate the disentangled representation, for example, to re-render an image with explicit control over parameterized degrees of freedom. The feature space is constructed using a transforming encoder-decoder network with a custom feature transform layer, acting on the hidden representations. We demonstrate the advantages of explicit disentangling on a variety of datasets and transformations, and as an aid for traditional tasks, such as classification.Comment: Accepted at ICCV 201

    MIMAMO Net: Integrating Micro- and Macro-motion for Video Emotion Recognition

    Full text link
    Spatial-temporal feature learning is of vital importance for video emotion recognition. Previous deep network structures often focused on macro-motion which extends over long time scales, e.g., on the order of seconds. We believe integrating structures capturing information about both micro- and macro-motion will benefit emotion prediction, because human perceive both micro- and macro-expressions. In this paper, we propose to combine micro- and macro-motion features to improve video emotion recognition with a two-stream recurrent network, named MIMAMO (Micro-Macro-Motion) Net. Specifically, smaller and shorter micro-motions are analyzed by a two-stream network, while larger and more sustained macro-motions can be well captured by a subsequent recurrent network. Assigning specific interpretations to the roles of different parts of the network enables us to make choice of parameters based on prior knowledge: choices that turn out to be optimal. One of the important innovations in our model is the use of interframe phase differences rather than optical flow as input to the temporal stream. Compared with the optical flow, phase differences require less computation and are more robust to illumination changes. Our proposed network achieves state of the art performance on two video emotion datasets, the OMG emotion dataset and the Aff-Wild dataset. The most significant gains are for arousal prediction, for which motion information is intuitively more informative. Source code is available at https://github.com/wtomin/MIMAMO-Net.Comment: Accepted by AAAI 202

    Evaluation of sets of oriented and non-oriented receptive fields as local descriptors

    Get PDF
    Local descriptors are increasingly used for the task of object recognition because of their perceived robustness with respect to occlusions and to global geometrical deformations. We propose a performance criterion for a local descriptor based on the tradeoff between selectivity and invariance. In this paper, we evaluate several local descriptors with respect to selectivity and invariance. The descriptors that we evaluated are Gaussian derivatives up to the third order, gray image patches, and Laplacian-based descriptors with either three scales or one scale filters. We compare selectivity and invariance to several affine changes such as rotation, scale, brightness, and viewpoint. Comparisons have been made keeping the dimensionality of the descriptors roughly constant. The overall results indicate a good performance by the descriptor based on a set of oriented Gaussian filters. It is interesting that oriented receptive fields similar to the Gaussian derivatives as well as receptive fields similar to the Laplacian are found in primate visual cortex

    Shape Representations Using Nested Descriptors

    Get PDF
    The problem of shape representation is a core problem in computer vision. It can be argued that shape representation is the most central representational problem for computer vision, since unlike texture or color, shape alone can be used for perceptual tasks such as image matching, object detection and object categorization. This dissertation introduces a new shape representation called the nested descriptor. A nested descriptor represents shape both globally and locally by pooling salient scaled and oriented complex gradients in a large nested support set. We show that this nesting property introduces a nested correlation structure that enables a new local distance function called the nesting distance, which provides a provably robust similarity function for image matching. Furthermore, the nesting property suggests an elegant flower like normalization strategy called a log-spiral difference. We show that this normalization enables a compact binary representation and is equivalent to a form a bottom up saliency. This suggests that the nested descriptor representational power is due to representing salient edges, which makes a fundamental connection between the saliency and local feature descriptor literature. In this dissertation, we introduce three examples of shape representation using nested descriptors: nested shape descriptors for imagery, nested motion descriptors for video and nested pooling for activities. We show evaluation results for these representations that demonstrate state-of-the-art performance for image matching, wide baseline stereo and activity recognition tasks

    Mean Oriented Riesz Features for Micro Expression Classification

    Get PDF
    Micro-expressions are brief and subtle facial expressions that go on and off the face in a fraction of a second. This kind of facial expressions usually occurs in high stake situations and is considered to reflect a human's real intent. There has been some interest in micro-expression analysis, however, a great majority of the methods are based on classically established computer vision methods such as local binary patterns, histogram of gradients and optical flow. A novel methodology for micro-expression recognition using the Riesz pyramid, a multi-scale steerable Hilbert transform is presented. In fact, an image sequence is transformed with this tool, then the image phase variations are extracted and filtered as proxies for motion. Furthermore, the dominant orientation constancy from the Riesz transform is exploited to average the micro-expression sequence into an image pair. Based on that, the Mean Oriented Riesz Feature description is introduced. Finally the performance of our methods are tested in two spontaneous micro-expressions databases and compared to state-of-the-art methods

    Distinguishing Posed and Spontaneous Smiles by Facial Dynamics

    Full text link
    Smile is one of the key elements in identifying emotions and present state of mind of an individual. In this work, we propose a cluster of approaches to classify posed and spontaneous smiles using deep convolutional neural network (CNN) face features, local phase quantization (LPQ), dense optical flow and histogram of gradient (HOG). Eulerian Video Magnification (EVM) is used for micro-expression smile amplification along with three normalization procedures for distinguishing posed and spontaneous smiles. Although the deep CNN face model is trained with large number of face images, HOG features outperforms this model for overall face smile classification task. Using EVM to amplify micro-expressions did not have a significant impact on classification accuracy, while the normalizing facial features improved classification accuracy. Unlike many manual or semi-automatic methodologies, our approach aims to automatically classify all smiles into either `spontaneous' or `posed' categories, by using support vector machines (SVM). Experimental results on large UvA-NEMO smile database show promising results as compared to other relevant methods.Comment: 16 pages, 8 figures, ACCV 2016, Second Workshop on Spontaneous Facial Behavior Analysi
    corecore