41,429 research outputs found

    Face Detection and Recognition Using Raspberry PI Computer

    Get PDF
    This paper presents a face detection and recognition system utilizing a Raspberry Pi computer that is built on a predefined framework. The theoretical section of this article shows several techniques that can be used for face detection, including Haar cascades, Histograms of Oriented Gradients, Support Vector Machine and Deep Learning Methods. The paper also provides examples of some commonly used face recognition techniques, including Fisherfaces, Eigenfaces, Histogram of Local Binary Patterns, SIFT and SURF descriptor-based methods and Deep Learning Methods. The practical aspect of this paper demonstrates use of a Raspberry Pi computer, along with supplementary tools and software, to detect and recognize faces using a pre-defined dataset

    Robust face recognition

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Face recognition is one of the most important and promising biometric techniques. In face recognition, a similarity score is automatically calculated between face images to further decide their identity. Due to its non-invasive characteristics and ease of use, it has shown great potential in many real-world applications, e.g., video surveillance, access control systems, forensics and security, and social networks. This thesis addresses key challenges inherent in real-world face recognition systems including pose and illumination variations, occlusion, and image blur. To tackle these challenges, a series of robust face recognition algorithms are proposed. These can be summarized as follows: In Chapter 2, we present a novel, manually designed face image descriptor named “Dual-Cross Patterns” (DCP). DCP efficiently encodes the seconder-order statistics of facial textures in the most informative directions within a face image. It proves to be more descriptive and discriminative than previous descriptors. We further extend DCP into a comprehensive face representation scheme named “Multi-Directional Multi-Level Dual-Cross Patterns” (MDML-DCPs). MDML-DCPs efficiently encodes the invariant characteristics of a face image from multiple levels into patterns that are highly discriminative of inter-personal differences but robust to intra-personal variations. MDML-DCPs achieves the best performance on the challenging FERET, FRGC 2.0, CAS-PEAL-R1, and LFW databases. In Chapter 3, we develop a deep learning-based face image descriptor named “Multimodal Deep Face Representation” (MM-DFR) to automatically learn face representations from multimodal image data. In brief, convolutional neural networks (CNNs) are designed to extract complementary information from the original holistic face image, the frontal pose image rendered by 3D modeling, and uniformly sampled image patches. The recognition ability of each CNN is optimized by carefully integrating a number of published or newly developed tricks. A feature level fusion approach using stacked auto-encoders is designed to fuse the features extracted from the set of CNNs, which is advantageous for non-linear dimension reduction. MM-DFR achieves over 99% recognition rate on LFW using publicly available training data. In Chapter 4, based on our research on handcrafted face image descriptors, we propose a powerful pose-invariant face recognition (PIFR) framework capable of handling the full range of pose variations within ±90° of yaw. The framework has two parts: the first is Patch-based Partial Representation (PBPR), and the second is Multi-task Feature Transformation Learning (MtFTL). PBPR transforms the original PIFR problem into a partial frontal face recognition problem. A robust patch-based face representation scheme is developed to represent the synthesized partial frontal faces. For each patch, a transformation dictionary is learnt under the MtFTL scheme. The transformation dictionary transforms the features of different poses into a discriminative subspace in which face matching is performed. The PBPR-MtFTL framework outperforms previous state-of-the-art PIFR methods on the FERET, CMU-PIE, and Multi-PIE databases. In Chapter 5, based on our research on deep learning-based face image descriptors, we design a novel framework named Trunk-Branch Ensemble CNN (TBE-CNN) to handle challenges in video-based face recognition (VFR) under surveillance circumstances. Three major challenges are considered: image blur, occlusion, and pose variation. First, to learn blur-robust face representations, we artificially blur training data composed of clear still images to account for a shortfall in real-world video training data. Second, to enhance the robustness of CNN features to pose variations and occlusion, we propose the TBE-CNN architecture, which efficiently extracts complementary information from holistic face images and patches cropped around facial components. Third, to further promote the discriminative power of the representations learnt by TBE-CNN, we propose an improved triplet loss function. With the proposed techniques, TBE-CNN achieves state-of-the-art performance on three popular video face databases: PaSC, COX Face, and YouTube Faces

    Local binary pattern network: a deep learning approach for face recognition

    Get PDF
    Deep learning is well known as a method to extract hierarchical representations of data. This method has been widely implemented in many fields, including image classification, speech recognition, natural language processing, etc. Over the past decade, deep learning has made a great progress in solving face recognition problems due to its effectiveness. In this thesis a novel deep learning multilayer hierarchy based methodology, named Local Binary Pattern Network (LBPNet), is proposed. Unlike the shallow LBP method, LBPNet performs multi-scale analysis and gains high-level representations from low-level overlapped features in a systematic manner. The LBPNet deep learning network is generated by retaining the topology of Convolutional Neural Network (CNN) and replacing its trainable kernel with the off-the-shelf computer vision descriptor, the LBP descriptor. This enables LBPNet to achieve a high recognition accuracy without requiring costly model learning approach on massive data. LBPNet progressively extracts features from input images from test and training data through multiple processing layers, pairwisely measures the similarity of extracted features in regional level, and then performs the classification based on the aggregated similarity values. Through extensive numerical experiments using the popular benchmarks (i.e., FERET, LFW and YTF), LBPNet has shown the promising results. Its results out-perform (on FERET) or are comparable (on LFW and FERET) to other methods in the same categories, which are single descriptor based unsupervised learning methods on FERET and LFW, and single descriptor based supervise learning methods with image-restricted no outside data settings on LFW and YTF, respectively. --Leaves i-ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b214095

    Multicolumn Networks for Face Recognition

    Full text link
    The objective of this work is set-based face recognition, i.e. to decide if two sets of images of a face are of the same person or not. Conventionally, the set-wise feature descriptor is computed as an average of the descriptors from individual face images within the set. In this paper, we design a neural network architecture that learns to aggregate based on both "visual" quality (resolution, illumination), and "content" quality (relative importance for discriminative classification). To this end, we propose a Multicolumn Network (MN) that takes a set of images (the number in the set can vary) as input, and learns to compute a fix-sized feature descriptor for the entire set. To encourage high-quality representations, each individual input image is first weighted by its "visual" quality, determined by a self-quality assessment module, and followed by a dynamic recalibration based on "content" qualities relative to the other images within the set. Both of these qualities are learnt implicitly during training for set-wise classification. Comparing with the previous state-of-the-art architectures trained with the same dataset (VGGFace2), our Multicolumn Networks show an improvement of between 2-6% on the IARPA IJB face recognition benchmarks, and exceed the state of the art for all methods on these benchmarks.Comment: To appear in BMVC201

    Multi-View Graph Fusion for Semi-Supervised Learning: Application to Image-Based Face Beauty Prediction

    Get PDF
    Facial Beauty Prediction (FBP) is an important visual recognition problem to evaluate the attractiveness of faces according to human perception. Most existing FBP methods are based on supervised solutions using geometric or deep features. Semi-supervised learning for FBP is an almost unexplored research area. In this work, we propose a graph-based semi-supervised method in which multiple graphs are constructed to find the appropriate graph representation of the face images (with and without scores). The proposed method combines both geometric and deep feature-based graphs to produce a high-level representation of face images instead of using a single face descriptor and also improves the discriminative ability of graph-based score propagation methods. In addition to the data graph, our proposed approach fuses an additional graph adaptively built on the predicted beauty values. Experimental results on the SCUTFBP-5500 facial beauty dataset demonstrate the superiority of the proposed algorithm compared to other state-of-the-art methods

    On Robust Face Recognition via Sparse Encoding: the Good, the Bad, and the Ugly

    Get PDF
    In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates
    corecore