2,279 research outputs found

    Collaborative Representation based Classification for Face Recognition

    Full text link
    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the face recognition accuracy and efficiency of CRC with different instantiations.Comment: It is a substantial revision of a previous conference paper (L. Zhang, M. Yang, et al. "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?" in ICCV 2011

    Learning Representations for Face Recognition: A Review from Holistic to Deep Learning

    Get PDF
    For decades, researchers have investigated how to recognize facial images. This study reviews the development of different face recognition (FR) methods, namely, holistic learning, handcrafted local feature learning, shallow learning, and deep learning (DL). With the development of methods, the accuracy of recognizing faces in the labeled faces in the wild (LFW) database has been increased. The accuracy of holistic learning is 60%, that of handcrafted local feature learning increases to 70%, and that of shallow learning is 86%. Finally, DL achieves human-level performance (97% accuracy). This enhanced accuracy is caused by large datasets and graphics processing units (GPUs) with massively parallel processing capabilities. Furthermore, FR challenges and current research studies are discussed to understand future research directions. The results of this study show that presently the database of labeled faces in the wild has reached 99.85% accuracy
    • …
    corecore