18,437 research outputs found

    MobiBits: Multimodal Mobile Biometric Database

    Full text link
    This paper presents a novel database comprising representations of five different biometric characteristics, collected in a mobile, unconstrained or semi-constrained setting with three different mobile devices, including characteristics previously unavailable in existing datasets, namely hand images, thermal hand images, and thermal face images, all acquired with a mobile, off-the-shelf device. In addition to this collection of data we perform an extensive set of experiments providing insight on benchmark recognition performance that can be achieved with these data, carried out with existing commercial and academic biometric solutions. This is the first known to us mobile biometric database introducing samples of biometric traits such as thermal hand images and thermal face images. We hope that this contribution will make a valuable addition to the already existing databases and enable new experiments and studies in the field of mobile authentication. The MobiBits database is made publicly available to the research community at no cost for non-commercial purposes.Comment: Submitted for the BIOSIG2018 conference on June 18, 2018. Accepted for publication on July 20, 201

    SqueezerFaceNet: Reducing a Small Face Recognition CNN Even More Via Filter Pruning

    Full text link
    The widespread use of mobile devices for various digital services has created a need for reliable and real-time person authentication. In this context, facial recognition technologies have emerged as a dependable method for verifying users due to the prevalence of cameras in mobile devices and their integration into everyday applications. The rapid advancement of deep Convolutional Neural Networks (CNNs) has led to numerous face verification architectures. However, these models are often large and impractical for mobile applications, reaching sizes of hundreds of megabytes with millions of parameters. We address this issue by developing SqueezerFaceNet, a light face recognition network which less than 1M parameters. This is achieved by applying a network pruning method based on Taylor scores, where filters with small importance scores are removed iteratively. Starting from an already small network (of 1.24M) based on SqueezeNet, we show that it can be further reduced (up to 40%) without an appreciable loss in performance. To the best of our knowledge, we are the first to evaluate network pruning methods for the task of face recognition.Comment: Published at VIII International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 202

    Authentication based on bioelectrical parameters

    Get PDF
    Some current mobile devices authenticate users by verifying the user’s fingerprint, the user’s face, etc. Smartphones and other mobile devices are increasingly being designed to be smaller and thinner, with displays occupying a proportionately larger area of the surface of the device. Consequently, there is less area available near the top and bottom of the screen to place fingerprint or camera-based authentication hardware. When users permit use of such data, techniques of this disclosure make advantageous use of unique electrical parameters of the human body, e.g., resistance, capacitance, and/or inductance between the fingers of a user’s hand to authenticate the user. Standard electrical sensors are placed unobtrusively on the sides of the mobile device and are configured to measure a bioelectrical signature of the user. In this manner, user authentication is performed without use of traditional hardware, e.g., fingerprint or face recognition sensors, thereby freeing up additional space for display

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission

    Reviewed: The Face Authentication Processes for Accessing Cloud Computing Services using iPhone

    Get PDF
    Presently, there are several IT services that provide services for convenient access. Users can access those services by local access or remote access from anytime or anywhere including services which are on cloud computing system. Furthermore, mobile devices are very more widely used in our society as we have seen the large number of delivered mobile devices each year. However, the security for accessing the cloud services must be concerned because there are many of illicit uses of the processes easier for fraudsters. Authentication is one of the ways to prevent fraudsters. This research proposes both physical features by using face recognition and voice recognition system and behavioural feature using password. This paper describes face recognition processes in more detail. Researchers also proposed adaptive biometric authentication for accessing cloud computing services using iPhone. The research integrates the adaptive biometric authentication with multi-modal approaches which have advantages in term of flexibility and security. The status of this research is in progress

    eBiometrics: an enhanced multi-biometrics authentication technique for real-time remote applications on mobile devices

    Get PDF
    The use of mobile communication devices with advance sensors is growing rapidly. These sensors are enabling functions such as Image capture, Location applications, and Biometric authentication such as Fingerprint verification and Face & Handwritten signature recognition. Such ubiquitous devices are essential tools in today's global economic activities enabling anywhere-anytime financial and business transactions. Cryptographic functions and biometric-based authentication can enhance the security and confidentiality of mobile transactions. Using Biometric template security techniques in real-time biometric-based authentication are key factors for successful identity verification solutions, but are venerable to determined attacks by both fraudulent software and hardware. The EU-funded SecurePhone project has designed and implemented a multimodal biometric user authentication system on a prototype mobile communication device. However, various implementations of this project have resulted in long verification times or reduced accuracy and/or security. This paper proposes to use built-in-self-test techniques to ensure no tampering has taken place on the verification process prior to performing the actual biometric authentication. These techniques utilises the user personal identification number as a seed to generate a unique signature. This signature is then used to test the integrity of the verification process. Also, this study proposes the use of a combination of biometric modalities to provide application specific authentication in a secure environment, thus achieving optimum security level with effective processing time. I.e. to ensure that the necessary authentication steps and algorithms running on the mobile device application processor can not be undermined or modified by an imposter to get unauthorized access to the secure system

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques
    • …
    corecore