21,960 research outputs found

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    Learn to synthesize and synthesize to learn

    Get PDF
    Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require training data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.Comment: Accepted to Computer Vision and Image Understanding (CVIU

    Fast Preprocessing for Robust Face Sketch Synthesis

    Full text link
    Exemplar-based face sketch synthesis methods usually meet the challenging problem that input photos are captured in different lighting conditions from training photos. The critical step causing the failure is the search of similar patch candidates for an input photo patch. Conventional illumination invariant patch distances are adopted rather than directly relying on pixel intensity difference, but they will fail when local contrast within a patch changes. In this paper, we propose a fast preprocessing method named Bidirectional Luminance Remapping (BLR), which interactively adjust the lighting of training and input photos. Our method can be directly integrated into state-of-the-art exemplar-based methods to improve their robustness with ignorable computational cost.Comment: IJCAI 2017. Project page: http://www.cs.cityu.edu.hk/~yibisong/ijcai17_sketch/index.htm
    • …
    corecore