26 research outputs found

    Face Recognition Method Based on Fuzzy 2DPCA

    Get PDF

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    画像情報を利用した複数識別統合による性別と年齢層の識別

    Get PDF
    制度:新 ; 文部省報告番号:甲2483号 ; 学位の種類:博士(工学) ; 授与年月日:2007/7/26 ; 早大学位記番号:新459

    Various Approaches of Support vector Machines and combined Classifiers in Face Recognition

    Get PDF
    In this paper we present the various approaches used in face recognition from 2001-2012.because in last decade face recognition is using in many fields like Security sectors, identity authentication. Today we need correct and speedy performance in face recognition. This time the face recognition technology is in matured stage because research is conducting continuously in this field. Some extensions of Support vector machine (SVM) is reviewed that gives amazing performance in face recognition.Here we also review some papers of combined classifier approaches that is also a dynamic research area in a pattern recognition

    Method for solving nonlinearity in recognising tropical wood species

    Get PDF
    Classifying tropical wood species pose a considerable economic challenge and failure to classify the wood species accurately can have significant effects on timber industries. Hence, an automatic tropical wood species recognition system was developed at Centre for Artificial Intelligence and Robotics (CAIRO), Universiti Teknologi Malaysia. The system classifies wood species based on texture analysis whereby wood surface images are captured and wood features are extracted from these images which will be used for classification. Previous research on tropical wood species recognition systems considered methods for wood species classification based on linear features. Since wood species are known to exhibit nonlinear features, a Kernel-Genetic Algorithm (Kernel-GA) is proposed in this thesis to perform nonlinear feature selection. This method combines the Kernel Discriminant Analysis (KDA) technique with Genetic Algorithm (GA) to generate nonlinear wood features and also reduce dimension of the wood database. The proposed system achieved classification accuracy of 98.69%, showing marked improvement to the work done previously. Besides, a fuzzy logic-based pre-classifier is also proposed in this thesis to mimic human interpretation on wood pores which have been proven to aid the data acquisition bottleneck and serve as a clustering mechanism for large database simplifying the classification. The fuzzy logic-based pre-classifier managed to reduce the processing time for training and testing by more than 75% and 26% respectively. Finally, the fuzzy pre-classifier is combined with the Kernal-GA algorithm to improve the performance of the tropical wood species recognition system. The experimental results show that the combination of fuzzy preclassifier and nonlinear feature selection improves the performance of the tropical wood species recognition system in terms of memory space, processing time and classification accuracy

    A Review on Advanced Decision Trees for Efficient & Effective k-NN Classification

    Get PDF
    K Nearest Neighbor (KNN) strategy is a notable classification strategy in data mining and estimations in light of its direct execution and colossal arrangement execution. In any case, it is outlandish for ordinary KNN strategies to select settled k esteem to all tests. Past courses of action assign different k esteems to different test tests by the cross endorsement strategy however are typically tedious. This work proposes new KNN strategies, first is a KTree strategy to learn unique k esteems for different test or new cases, by including a training arrange in the KNN classification. This work additionally proposes a change rendition of KTree technique called K*Tree to speed its test organize by putting additional data of the training tests in the leaf node of KTree, for example, the training tests situated in the leaf node, their KNNs, and the closest neighbor of these KNNs. K*Tree, which empowers to lead KNN arrangement utilizing a subset of the training tests in the leaf node instead of all training tests utilized in the recently KNN techniques. This really reduces the cost of test organize

    Improving Human Face Recognition Using Deep Learning Based Image Registration And Multi-Classifier Approaches

    Get PDF
    Face detection, registration, and recognition have become a fascinating field for researchers. The motivation behind the enormous interest in the topic is the need to improve the accuracy of many real-time applications. Countless methodologies have been acknowledged and presented in the past years. The complexity of the human face visual and the significant changes based on different effects make it more challenging to design as well as implementing a powerful computational system for object recognition in addition to human face recognition. Using supervised learning often requires extensive training for the computer which results in high execution times. It is an essential step in the face recognition to apply strong preprocessing approaches such as face registration to achieve a high recognition accuracy rate. Although there are exist approaches do both detection and recognition, we believe the absence of a complete end-to-end system capable of performing recognition from an arbitrary scene is in large part due to the difficulty in alignment. Often, the face registration is ignored, with the assumption that the detector will perform a rough alignment, leading to suboptimal recognition performance. In this research, we presented an enhanced approach to improve human face recognition using a back-propagation neural network (BPNN) and features extraction based on the correlation between the training images. A key contribution of this paper is the generation of a new set called the T-Dataset from the original training data set, which is used to train the BPNN. We generated the T-Dataset using the correlation between the training images without using a common technique of image density. The correlated T-Dataset provides a high distinction layer between the training images, which helps the BPNN to converge faster and achieve better accuracy. Data and features reduction is essential in the face recognition process, and researchers have recently focused on the modern neural network. Therefore, we used using a classical conventional Principal Component Analysis (PCA) and Local Binary Patterns (LBP) to prove that there is a potential improvement even using traditional methods. We applied five distance measurement algorithms and then combined them to obtain the T-Dataset, which we fed into the BPNN. We achieved higher face recognition accuracy with less computational cost compared with the current approach by using reduced image features. We test the proposed framework on two small data sets, the YALE and AT&T data sets, as the ground truth. We achieved tremendous accuracy. Furthermore, we evaluate our method on one of the state-of-the-art benchmark data sets, Labeled Faces in the Wild (LFW), where we produce a competitive face recognition performance. In addition, we presented an enhanced framework to improve the face registration using deep learning model. We used deep architectures such as VGG16 and VGG19 to train our method. We trained our model to learn the transformation parameters (Rotation, scaling, and shifting). By leaning the transformation parameters, we will able to transfer the image back to the frontal domain. We used the LFW dataset to evaluate our method, and we achieve high accuracy

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    Multi-View Face Detection Based on Kernel Principal Component Analysis and Kernel Support Vector Techniques

    Full text link
    corecore