70,452 research outputs found

    Face identification by deformation measure

    Get PDF
    This paper studies the problem of face identification for the particular application of an automatic cash machine withdrawal: the problem is to decide if a person identifying himself by a secret code is the same person registered in the data base. The identification process consists of three main stages. The localization of salient features is obtained by using morphological operators and spatio-temporal information. The location of these features are used to achieve a normalization of the face image with regard to the corresponding face in the data base. Facial features, such as eyes, mouth and nose, are extracted by an active contour model which is able to incorporate information about the global shape of each object. Finally the identification is achieved by face warping including a deformation measure. 1

    3-D Face Analysis and Identification Based on Statistical Shape Modelling

    Get PDF
    This paper presents an effective method of statistical shape representation for automatic face analysis and identification in 3-D. The method combines statistical shape modelling techniques and the non-rigid deformation matching scheme. This work is distinguished by three key contributions. The first is the introduction of a new 3-D shape registration method using hierarchical landmark detection and multilevel B-spline warping technique, which allows accurate dense correspondence search for statistical model construction. The second is the shape representation approach, based on Laplacian Eigenmap, which provides a nonlinear submanifold that links underlying structure of facial data. The third contribution is a hybrid method for matching the statistical model and test dataset which controls the levels of the model’s deformation at different matching stages and so increases chance of the successful matching. The proposed method is tested on the public database, BU-3DFE. Results indicate that it can achieve extremely high verification rates in a series of tests, thus providing real-world practicality

    Degenerations of ideal hyperbolic triangulations

    Full text link
    Let M be a cusped 3-manifold, and let T be an ideal triangulation of M. The deformation variety D(T), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T, is defined and compactified by adding certain projective classes of transversely measured singular codimension-one foliations of M. This leads to a combinatorial and geometric variant of well-known constructions by Culler, Morgan and Shalen concerning the character variety of a 3-manifold.Comment: 31 pages, 11 figures; minor changes; to appear in Mathematische Zeitschrif

    Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields

    Get PDF
    The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated

    3D Residual Stress Field in Arteries: Novel Inverse Method Based on Optical Full-field Measurements

    Get PDF
    Arterial tissue consists of multiple structurally important constituents that have individual material properties and associated stress-free configurations that evolve over time. This gives rise to residual stresses contributing to the homoeostatic state of stress in vivo as well as adaptations to perturbed loads, disease or injury. The existence of residual stresses in an intact but load-free excised arterial segment suggests compressive and tensile stresses, respectively, in the inner and outer walls. Accordingly, an artery ring springs open into a sector after a radial cut. The measurement of the opening angle is commonly used to deduce the residual stresses, which are the stresses required to close back the ring. The opening angle method provides an average estimate of circumferential residual stresses but it gives no information on local distributions through the thickness and along the axial direction. To address this lack, a new method is proposed in this article to derive maps of residual stresses using an approach based on the contour method. A piece of freshly excised tissue is carefully cut into the specimen, and the local distribution of residual strains and stresses is determined from whole-body digital image correlation measurements using an inverse approach based on a finite element model

    Quasi-static and Dynamic Behavior of Additively Manufactured Metallic Lattice Cylinders

    Full text link
    Lattice structures have tailorable mechanical properties which allows them to exhibit superior mechanical properties (per unit weight) beyond what is achievable through natural materials. In this paper, quasi-static and dynamic behavior of additively manufactured stainless steel lattice cylinders is studied. Cylindrical samples with internal lattice structure are fabricated by a laser powder bed fusion system. Equivalent hollow cylindrical samples with the same length, outer diameter, and mass (larger wall thickness) are also fabricated. Split Hopkinson bar is used to study the behavior of the specimens under high strain rate loading. It is observed that lattice cylinders reduce the transmitted wave amplitude up to about 21% compared to their equivalent hollow cylinders. However, the lower transmitted wave energy in lattice cylinders comes at the expense of a greater reduction in their stiffness, when compared to their equivalent hollow cylinder. In addition, it is observed that increasing the loading rate by five orders of magnitude leads to up to about 36% increase in the peak force that the lattice cylinder can carry, which is attributed to strain rate hardening effect in the bulk stainless steel material. Finite element simulations of the specimens under dynamic loads are performed to study the effect of strain rate hardening, thermal softening, and the failure mode on dynamic behavior of the specimens. Numerical results are compared with experimental data and good qualitative agreement is observed.Comment: 20th Biennial Conference of the APS Topical Group on Shock Compression of Condensed Matte

    Experimental analysis and modeling of orthogonal cutting using material and friction models

    Get PDF
    In this study, a process model for orthogonal cutting processes is proposed. The model involves the primary and secondary deformation zones. The primary shear zone is modeled by a Johnson-Cook constitutive relationship and a shear plane having constant thickness. The secondary deformation zone is modeled semi-analytically, where the coefficient of friction is calibrated experimentally. The cutting forces predicted using the calibrated sliding friction coefficients are in good agreement with the measurements. The experimental investigation of sliding friction coefficients also show promising results for the proposed model, which is still under development

    Explicit Formulas for Relaxed Disarrangement Densities Arising from Structured Deformations

    Full text link
    Structured deformations provide a multiscale geometry that captures the contributions at the macrolevel of both smooth geometrical changes and non-smooth geometrical changes (disarrangements) at submacroscopic levels. For each (first-order) structured deformation (g,G)(g,G) of a continuous body, the tensor field GG is known to be a measure of deformations without disarrangements, and M:=gGM:=\nabla g-G is known to be a measure of deformations due to disarrangements. The tensor fields GG and MM together deliver not only standard notions of plastic deformation, but MM and its curl deliver the Burgers vector field associated with closed curves in the body and the dislocation density field used in describing geometrical changes in bodies with defects. Recently, Owen and Paroni [13] evaluated explicitly some relaxed energy densities arising in Choksi and Fonseca's energetics of structured deformations [4] and thereby showed: (1) (trM)+(trM)^{+}, the positive part of trMtrM, is a volume density of disarrangements due to submacroscopic separations, (2) (trM)(trM)^{-}, the negative part of trMtrM, is a volume density of disarrangements due to submacroscopic switches and interpenetrations, and (3) trM|trM|, the absolute value of trMtrM, is a volume density of all three of these non-tangential disarrangements: separations, switches, and interpenetrations. The main contribution of the present research is to show that a different approach to the energetics of structured deformations, that due to Ba\'ia, Matias, and Santos [1], confirms the roles of (trM)+(trM)^{+}, (trM)(trM)^{-}, and trM|trM| established by Owen and Paroni. In doing so, we give an alternative, shorter proof of Owen and Paroni's results, and we establish additional explicit formulas for other measures of disarrangements.Comment: 17 pages; http://cvgmt.sns.it/paper/2776
    corecore