16 research outputs found

    Algorithmic Modelling of Folded Surfaces. Analysis and Design of Folded Surfaces in Architecture and Manufacturing.

    Get PDF
    Both in the field of design and architecture origami is often taken as a reference for its kinetic proprieties and its elegant appearance. Dynamic facades, fast deployment structures, temporary shelters, portable furniture, retractile roofs, are some examples which can take advantage of the kinetic properties of the origami. While designing with origami, the designer needs to control shape and motion at the same time, which increases the complexity of the design process. This complexity of the design process may lead the designers to choose a solution where the patterns are mere copies of well-known patterns or to reference to the origami only for ornamental purposes. The origami-inspired projects that we gathered and studied in the fields of architecture, manufacturing and fashion, confirmed this trend. We observed that the cause of this lack of variety could also be attributed to insufficient knowledge, or to inefficiency of the design tools. Many researchers studied the mathematical implications of origami, to be able to design specific patterns for precise applications. However, this theoretical knowledge is hard to apply directly to different practical projects without a deep understanding of these theorems. Thus, in this thesis, we aim to narrow the gap between potentialities of this discipline and limits of the available designing tools, by proposing a simplified synthetic constructive approach, applied with a parametric modeller, which allows the designers to bypass scripting and algebraic formulations and, at the same time, it increases the design freedom. Among the cases studies, we propose some fabrication-aimed examples, which introduce the subjects of thick-origami, distribution of stresses and analysis of deformations of the folded models.Nei campi dell’architettura e dell’industrial design, l’origami è spesso preso come riferimento per le sue proprietà cinetiche e le sue forme eleganti. Facciate dinamiche, strutture pieghevoli, rifugi temporanei, arredi portatili, tetti retrattili, sono alcuni esempi di progetti che potrebbero beneficiare delle proprietà cinetiche dell’origami. Progettare con l’origami richiede di controllare forma e movimento contemporaneamente; ciò aumenta la complessità del processo progettuale. Questa difficoltà progettuale può portare i progettisti a scegliere soluzioni che non sono altro che mere copie di pattern noti o a considerare l’origami come riferimento solo per ragioni ornamentali. I progetti ispirati all’origami che abbiamo raccolto ed analizzato nei campi di architettura, industria manifatturiera, e moda, confermano questo trend. Abbiamo osservato che la causa di questo mero utilizzo potrebbe essere attribuibile a preparazione insufficiente del progettista o a inefficienza degli strumenti progettuali. Diversi ricercatori hanno studiato le implicazioni matematiche dell’origami, per poter progettare specifici pattern per precise applicazioni. Nonostante ciò, questa conoscenza teorica è difficile da applicare direttamente ad altri progetti pratici senza una profonda comprensione di questi teoremi. Questa tesi punta quindi a ridurre il divario tra potenzialità di questa disciplina e limiti imposti dagli strumenti progettuali disponibili, proponendo un approccio sintetico e costruttivo semplificato, che permetta ai progettisti di evitare scripting e formulazioni algebriche, aumentando allo stesso tempo la libertà progettuale. Tra i casi studio, proponiamo anche alcuni esempi mirati alla fabbricazione che introducono il tema dell’origami a spessore non nullo, della distribuzione delle forze e dell’analisi delle deformazioni sui modelli piegati

    Origami based Mechanical Metamaterials

    Get PDF
    We describe mechanical metamaterials created by folding flat sheets in the tradition of origami, the art of paper folding, and study them in terms of their basic geometric and stiffness properties, as well as load bearing capability. A periodic Miura-ori pattern and a non-periodic Ron Resch pattern were studied. Unexceptional coexistence of positive and negative Poisson's ratio was reported for Miura-ori pattern, which are consistent with the interesting shear behavior and infinity bulk modulus of the same pattern. Unusually strong load bearing capability of the Ron Resch pattern was found and attributed to the unique way of folding. This work paves the way to the study of intriguing properties of origami structures as mechanical metamaterials.Includes Supplementary Informatio

    One Tile to Rule Them All: Simulating Any Tile Assembly System with a Single Universal Tile

    Get PDF
    In the classical model of tile self-assembly, unit square tiles translate in the plane and attach edgewise to form large crystalline structures. This model of self-assembly has been shown to be capable of asymptotically optimal assembly of arbitrary shapes and, via information-theoretic arguments, increasingly complex shapes necessarily require increasing numbers of distinct types of tiles. We explore the possibility of complex and efficient assembly using systems consisting of a single tile. Our main result shows that any system of square tiles can be simulated using a system with a single tile that is permitted to flip and rotate. We also show that systems of single tiles restricted to translation only can simulate cellular automata for a limited number of steps given an appropriate seed assembly, and that any longer-running simulation must induce infinite assembly

    KINE[SIS]TEM'17 From Nature to Architectural Matter

    Get PDF
    Kine[SiS]tem – From Kinesis + System. Kinesis is a non-linear movement or activity of an organism in response to a stimulus. A system is a set of interacting and interdependent agents forming a complex whole, delineated by its spatial and temporal boundaries, influenced by its environment. How can architectural systems moderate the external environment to enhance comfort conditions in a simple, sustainable and smart way? This is the starting question for the Kine[SiS]tem’17 – From Nature to Architectural Matter International Conference. For decades, architectural design was developed despite (and not with) the climate, based on mechanical heating and cooling. Today, the argument for net zero energy buildings needs very effective strategies to reduce energy requirements. The challenge ahead requires design processes that are built upon consolidated knowledge, make use of advanced technologies and are inspired by nature. These design processes should lead to responsive smart systems that deliver the best performance in each specific design scenario. To control solar radiation is one key factor in low-energy thermal comfort. Computational-controlled sensor-based kinetic surfaces are one of the possible answers to control solar energy in an effective way, within the scope of contradictory objectives throughout the year.FC

    Origami Cylinders

    Get PDF

    Reconfigurable DNA-nanochambers as dynamic compartmentalization systems

    Get PDF
    Dynamische DNA-Nanotechnologie repräsentiert eine innovative Methodik biomimeti-sche Nanostrukturen mit zunehmender Komplexität und Präzision aufzubauen. Ein großer Vorteil bei der Verwendung dieser Technik liegt in der gesamten räumlich und zeitlich kontrollierbaren Steuerung der Systeme im Nanometerbereich. Die Konfigu-rierbarkeit der Strukturen wurde in dieser Arbeit über sogenannte DNA Haarnadel-motive gesteuert. Mit Hilfe von temperaturabhängiger Förster-Resonanzenergietransfer (FRET) Spektroskopie war es somit möglich, die mechani-sche Kapazität und die Energie integrierter Ensembles dieser DNA Motoren innerhalb eines DNA Origami Systems zu bestimmen. Das Ergebnis ist ein neuartiges Modell, welches die Energielandschaft der Haarnadelmotive beschreibt. Dafür wurde das Nearest-Neighbor Modell, welches die thermodynamische Energie des DNA-Duplexes in der offenen Haarnadelform beschreibt, mit der freien entropischen Ener-gie der Einzelstrang DNA (geschlossene Form), die mittels des Worm-like Chain Algorithmus bestimmt wurde, miteinander kombiniert. Das gewonnene Verständnis über die Steuerung und Manipulation molekularer Kräfte ist essentiell und fundamen-tal für die Entwicklung und Konstruktion anspruchsvollerer Nanomaschinen und ge-währt zudem Einblick in die Funktionsweise komplexer molekularer Prozesse. Weiterhin war es möglich, durch die Verwendung dieser Methodik, strategisch zwei spezifische DNA Aptamere (TBA1 und TBA2) innerhalb eines DNA-Origami Rahmens zu integrieren, welches die Einkapselung der Serin Protease Thrombin ermöglichte. Die entwickelte Nanofabrik erlaubte somit die 1:1 host-guest Komplexierung ohne die natürlichen Eigenschaften des Proteins zu verändern, welches vergleichbar mit na-türlichen Kompartiment Systemen ist. Die Ergebnisse der Analysen zeigten, dass die Bindungsaffinität der Aptamer Liganden zum Protein innerhalb des Origami Systems und die katalytische Aktivität von Thrombin stark erhöht werden konnten und dass die geometrische Integration der Liganden eine effektive Methodik für die selektive Komplexierung und Manipulation eines gewünschten und vorher ausgewählten Pro-teins darstellt. Zusammenfassend konnte in dieser Arbeit das hohe Potential der DNA Nanotechnologie für die Konstruktion programmierbarer, bioinspirierter und künstlicher Nanokompartimentsysteme bewiesen werden, die für die Speicherung und den Transport spezifischer Materialien/Proteine zu definierten Zielorten innerhalb der Zelle verwendet werden können.Dynamic DNA nanotechnology offers an innovative opportunity to build up biomimetic nanostructures with increasing complexity and precision, depending on the overall spatial and temporal control of matter distribution with nanometer accuracy and in a trigger dependent manner. Mechanically switchable hairpin motifs thereby offer the possibility to perform DNA-induced conformational transitions. By means of tempera-ture dependent FRET spectroscopy it was possible to explore the operational capa-bilities, energetics and mechanical performance of a distinct collective ensemble of hairpin motifs tethered to a large DNA origami framework with the result of a novel hybrid spring model to describe the energy landscape of the integrated switchable hairpins. Consequently, the thermodynamic nearest-neighbor energy of the duplex DNA with the entropic free energy of single-stranded DNA estimated using a worm-like chain approximation was combined. Understanding of how mechanical forces can be gathered and manipulated at the molecular level is fundamental for the de-velopment of more sophisticated nanodevices and may help to gain more insights into the performance of complex natural molecular machines. Additionally, the strategic positioning of two G4-motifs (TBA1 and TBA2) within the inner cavity of the DNA frame demonstrated the possibility to form a 1:1 host-guest complex, without altering the natural properties of the encapsulated protein, thus emulating some of the fundamental properties of natural compartmentalization sys-tems. The results demonstrated that the binding affinity and activity of the thrombin were greatly enhanced by caging it within the origami frame and that defined geo-metric arrangements of the internalized aptamer ligands can be used to develop a tool for selective encapsulation and manipulation of desired molecular cargos. In conclusion, this work shows the high potential of DNA nanotechnology to build up programmable, dynamical, bioinspired artificial nanovessels, which might be used for the storage and delivery of materials and desired protein targets at precise cellular locations
    corecore