4 research outputs found

    Face Hallucination With Finishing Touches

    Full text link
    Obtaining a high-quality frontal face image from a low-resolution (LR) non-frontal face image is primarily important for many facial analysis applications. However, mainstreams either focus on super-resolving near-frontal LR faces or frontalizing non-frontal high-resolution (HR) faces. It is desirable to perform both tasks seamlessly for daily-life unconstrained face images. In this paper, we present a novel Vivid Face Hallucination Generative Adversarial Network (VividGAN) for simultaneously super-resolving and frontalizing tiny non-frontal face images. VividGAN consists of coarse-level and fine-level Face Hallucination Networks (FHnet) and two discriminators, i.e., Coarse-D and Fine-D. The coarse-level FHnet generates a frontal coarse HR face and then the fine-level FHnet makes use of the facial component appearance prior, i.e., fine-grained facial components, to attain a frontal HR face image with authentic details. In the fine-level FHnet, we also design a facial component-aware module that adopts the facial geometry guidance as clues to accurately align and merge the frontal coarse HR face and prior information. Meanwhile, two-level discriminators are designed to capture both the global outline of a face image as well as detailed facial characteristics. The Coarse-D enforces the coarsely hallucinated faces to be upright and complete while the Fine-D focuses on the fine hallucinated ones for sharper details. Extensive experiments demonstrate that our VividGAN achieves photo-realistic frontal HR faces, reaching superior performance in downstream tasks, i.e., face recognition and expression classification, compared with other state-of-the-art methods

    Face detection and alignment method for driver on highroad based on improved multi-task cascaded convolutional networks

    Full text link
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. Driver’s face detection and alignment techniques in Intelligent Transportation System (ITS) under unlimited environment are challenging issues, which are conductive to supervising traffic order and maintaining public safety. This paper proposes the improved Multi-task Cascaded Convolutional Networks (ITS-MTCNN) to realize accurate face region detection and feature alignment of driver’s face on highway, predicting face and feature location via a coarse-to-fine pattern. Moreover, the improved regularization method and effective online hard sample mining technique are proposed in ITS-MTCNN method. Then, the training model and contrast experiment are conducted on our self-build traffic driver’s face database. Finally, the effectiveness of ITS-MTCNN method is validated by comparative experiments and verified under various complex highway conditions. At the same time, average alignment errors on left eye, right eye, nose, left mouth as well as right mouth of the proposed technique are performed. Experimental results show that ITS-MTCNN model shows satisfied performance compared to other state-of-the-art techniques used in driver’s face detection and alignment, keeping robust to the occlusion, varying pose and extreme illumination on highway

    Brain Computations and Connectivity [2nd edition]

    Get PDF
    This is an open access title available under the terms of a CC BY-NC-ND 4.0 International licence. It is free to read on the Oxford Academic platform and offered as a free PDF download from OUP and selected open access locations. Brain Computations and Connectivity is about how the brain works. In order to understand this, it is essential to know what is computed by different brain systems; and how the computations are performed. The aim of this book is to elucidate what is computed in different brain systems; and to describe current biologically plausible computational approaches and models of how each of these brain systems computes. Understanding the brain in this way has enormous potential for understanding ourselves better in health and in disease. Potential applications of this understanding are to the treatment of the brain in disease; and to artificial intelligence which will benefit from knowledge of how the brain performs many of its extraordinarily impressive functions. This book is pioneering in taking this approach to brain function: to consider what is computed by many of our brain systems; and how it is computed, and updates by much new evidence including the connectivity of the human brain the earlier book: Rolls (2021) Brain Computations: What and How, Oxford University Press. Brain Computations and Connectivity will be of interest to all scientists interested in brain function and how the brain works, whether they are from neuroscience, or from medical sciences including neurology and psychiatry, or from the area of computational science including machine learning and artificial intelligence, or from areas such as theoretical physics
    corecore