2,399 research outputs found

    Discriminative Appearance Models for Face Alignment

    Get PDF
    The proposed face alignment algorithm uses local gradient features as the appearance representation. These features are obtained by pixel value comparison, which provide robustness against changes in illumination, as well as partial occlusion and local deformation due to the locality. The adopted features are modeled in three discriminative methods, which correspond to different alignment cost functions. The discriminative appearance modeling alleviate the generalization problem to some extent

    A novel hand reconstruction approach and its application to vulnerability assessment

    Full text link
    This is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences, 238 (2014) DOI: 10.1016/j.ins.2013.06.015The present work proposes a novel probabilistic method to reconstruct a hand shape image from its template. We analyse the degree of similarity between the reconstructed images and the original samples in order to determine whether the synthetic hands are able to deceive hand recognition systems. This analysis is made through the estimation of the success chances of an attack carried out with the synthetic samples against an independent system. The experimental results show that there is a high chance of breaking a hand recognition system using this approach. Furthermore, since it is a probabilistic method, several synthetic images can be generated from each original sample, which increases the success chances of the attack.This work has been partially supported by projects Contexts (S2009/TIC-1485) from CAM, Bio-Challenge (TEC2009-11186), BIOSINT (TEC2012-38630-C04-02) and Bio-Shield (TEC2012-34881) from Spanish MINECO, TABULA RASA (FP7-ICT-257289) and BEAT (FP7-SEC-284989) from EU, and Cátedra UAM-Telefónica. Marta Gomez-Barrero is supported by a FPU Fellowship from Spanish MECD

    Left Ventricle Myocardium Segmentation from 3D Cardiac MR Images using Combined Probabilistic Atlas and Graph Cut-based Approaches

    Get PDF
    Medical imaging modalities, including Computed Tomography (CT) Magnetic Resonance Imaging (MRI) and Ultrasound (US) are critical for the diagnosis and progress monitoring of many cardiac conditions, planning, visualization and delivery of therapy via minimally invasive intervention procedures, as well as for teaching, training and simulation applications. Image segmentation is a processing technique that allows the user to extract the necessary information from an image dataset, in the form of a surface model of the region of interest from the anatomy. A wide variety of segmentation techniques have been developed and implemented for cardiac MR images. Despite their complexity and performance, many of them are intended for specific image datasets or are too specific to be employed for segmenting classical clinical quality Magnetic Resonance (MR) images. Graph Cut based segmentation algorithms have been shown to work well in regards to medical image segmentation. In addition, they are computationally efficient, which scales well to real time applications. While the basic graph cuts algorithms use lower-order statistics, combining this segmentation approach with atlas-based methods may help improve segmentation accuracy at a lower computational cost. The proposed technique will be tested at each step during the development by assessing the segmentation results against the available ground truth segmentation. Several metrics will be used to quantify the performance of the proposed technique, including computational performance, segmentation accuracy and fidelity assessed via the Sørensen-Dice Coefficient (DSC), Mean Absolute Distance (MAD) and Hausdorff Distance (HD) metrics

    Multi-Surface Simplex Spine Segmentation for Spine Surgery Simulation and Planning

    Get PDF
    This research proposes to develop a knowledge-based multi-surface simplex deformable model for segmentation of healthy as well as pathological lumbar spine data. It aims to provide a more accurate and robust segmentation scheme for identification of intervertebral disc pathologies to assist with spine surgery planning. A robust technique that combines multi-surface and shape statistics-aware variants of the deformable simplex model is presented. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user-assistance is allowed to disable the prior shape influence during deformation. Results have been validated against user-assisted expert segmentation
    corecore