805 research outputs found

    Effective recognition of facial micro-expressions with video motion magnification

    Get PDF
    Facial expression recognition has been intensively studied for decades, notably by the psychology community and more recently the pattern recognition community. What is more challenging, and the subject of more recent research, is the problem of recognizing subtle emotions exhibited by so-called micro-expressions. Recognizing a micro-expression is substantially more challenging than conventional expression recognition because these micro-expressions are only temporally exhibited in a fraction of a second and involve minute spatial changes. Until now, work in this field is at a nascent stage, with only a few existing micro-expression databases and methods. In this article, we propose a new micro-expression recognition approach based on the Eulerian motion magnification technique, which could reveal the hidden information and accentuate the subtle changes in micro-expression motion. Validation of our proposal was done on the recently proposed CASME II dataset in comparison with baseline and state-of-the-art methods. We achieve a good recognition accuracy of up to 75.30% by using leave-one-out cross validation evaluation protocol. Extensive experiments on various factors at play further demonstrate the effectiveness of our proposed approach

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    Identification of tumor epithelium and stroma in tissue microarrays using texture analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of the study was to assess whether texture analysis is feasible for automated identification of epithelium and stroma in digitized tumor tissue microarrays (TMAs). Texture analysis based on local binary patterns (LBP) has previously been used successfully in applications such as face recognition and industrial machine vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of epithelium (n = 41) and stroma (n = 39) were used for training a support vector machine (SVM) classifier with LBP texture features and a contrast measure C (LBP/C) as input. We optimized the classifier on a validation set (n = 576) and then assessed its performance on an independent test set of images (n = 720). Finally, the performance of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered images.</p> <p>Results</p> <p>The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from stroma according to texture: the agreement between the classifier and the human observer was 97 per cent (kappa value = 0.934, <it>P </it>< 0.0001) and the accuracy (area under the ROC curve) of the LBP/C classifier was 0.995 (CI95% 0.991-0.998). The accuracy of the corresponding classifiers based on Haralick features and Gabor-filter images were 0.976 and 0.981 respectively.</p> <p>Conclusions</p> <p>The method illustrates the capability of automated segmentation of epithelial and stromal tissue in TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and protein expression, as well as computerized analysis of the tumor microenvironment.</p> <p>Virtual slides</p> <p>The virtual slide(s) for this article can be found here: <url>http://www.diagnosticpathology.diagnomx.eu/vs/4123422336534537</url></p

    Face Detection and Recognition using Skin Segmentation and Elastic Bunch Graph Matching

    Get PDF
    Recently, face detection and recognition is attracting a lot of interest in areas such as network security, content indexing and retrieval, and video compression, because ‘people’ are the object of attention in a lot of video or images. To perform such real-time detection and recognition, novel algorithms are needed, which better current efficiencies and speeds. This project is aimed at developing an efficient algorithm for face detection and recognition. This project is divided into two parts, the detection of a face from a complex environment and the subsequent recognition by comparison. For the detection portion, we present an algorithm based on skin segmentation, morphological operators and template matching. The skin segmentation isolates the face-like regions in a complex image and the following operations of morphology and template matching help reject false matches and extract faces from regions containing multiple faces. For the recognition of the face, we have chosen to use the ‘EGBM’ (Elastic Bunch Graph Matching) algorithm. For identifying faces, this system uses single images out of a database having one image per person. The task is complex because of variation in terms of position, size, expression, and pose. The system decreases this variance by extracting face descriptions in the form of image graphs. In this, the node points (chosen as eyes, nose, lips and chin) are described by sets of wavelet components (called ‘jets’). Image graph extraction is based on an approach called the ‘bunch graph’, which is constructed from a set of sample image graphs. Recognition is based on a directly comparing these graphs. The advantage of this method is in its tolerance to lighting conditions and requirement of less number of images per person in the database for comparison

    Unfamiliar facial identity registration and recognition performance enhancement

    Get PDF
    The work in this thesis aims at studying the problems related to the robustness of a face recognition system where specific attention is given to the issues of handling the image variation complexity and inherent limited Unique Characteristic Information (UCI) within the scope of unfamiliar identity recognition environment. These issues will be the main themes in developing a mutual understanding of extraction and classification tasking strategies and are carried out as a two interdependent but related blocks of research work. Naturally, the complexity of the image variation problem is built up from factors including the viewing geometry, illumination, occlusion and other kind of intrinsic and extrinsic image variation. Ideally, the recognition performance will be increased whenever the variation is reduced and/or the UCI is increased. However, the variation reduction on 2D facial images may result in loss of important clues or UCI data for a particular face alternatively increasing the UCI may also increase the image variation. To reduce the lost of information, while reducing or compensating the variation complexity, a hybrid technique is proposed in this thesis. The technique is derived from three conventional approaches for the variation compensation and feature extraction tasks. In this first research block, transformation, modelling and compensation approaches are combined to deal with the variation complexity. The ultimate aim of this combination is to represent (transformation) the UCI without losing the important features by modelling and discard (compensation) and reduce the level of the variation complexity of a given face image. Experimental results have shown that discarding a certain obvious variation will enhance the desired information rather than sceptical in losing the interested UCI. The modelling and compensation stages will benefit both variation reduction and UCI enhancement. Colour, gray level and edge image information are used to manipulate the UCI which involve the analysis on the skin colour, facial texture and features measurement respectively. The Derivative Linear Binary transformation (DLBT) technique is proposed for the features measurement consistency. Prior knowledge of input image with symmetrical properties, the informative region and consistency of some features will be fully utilized in preserving the UCI feature information. As a result, the similarity and dissimilarity representation for identity parameters or classes are obtained from the selected UCI representation which involves the derivative features size and distance measurement, facial texture and skin colour. These are mainly used to accommodate the strategy of unfamiliar identity classification in the second block of the research work. Since all faces share similar structure, classification technique should be able to increase the similarities within the class while increase the dissimilarity between the classes. Furthermore, a smaller class will result on less burden on the identification or recognition processes. The proposed method or collateral classification strategy of identity representation introduced in this thesis is by manipulating the availability of the collateral UCI for classifying the identity parameters of regional appearance, gender and age classes. In this regard, the registration of collateral UCI s have been made in such a way to collect more identity information. As a result, the performance of unfamiliar identity recognition positively is upgraded with respect to the special UCI for the class recognition and possibly with the small size of the class. The experiment was done using data from our developed database and open database comprising three different regional appearances, two different age groups and two different genders and is incorporated with pose and illumination image variations
    corecore