1,686 research outputs found

    Illumination tolerance in facial recognition

    Get PDF
    In this research work, five different preprocessing techniques were experimented with two different classifiers to find the best match for preprocessor + classifier combination to built an illumination tolerant face recognition system. Hence, a face recognition system is proposed based on illumination normalization techniques and linear subspace model using two distance metrics on three challenging, yet interesting databases. The databases are CAS PEAL database, the Extended Yale B database, and the AT&T database. The research takes the form of experimentation and analysis in which five illumination normalization techniques were compared and analyzed using two different distance metrics. The performances and execution times of the various techniques were recorded and measured for accuracy and efficiency. The illumination normalization techniques were Gamma Intensity Correction (GIC), discrete Cosine Transform (DCT), Histogram Remapping using Normal distribution (HRN), Histogram Remapping using Log-normal distribution (HRL), and Anisotropic Smoothing technique (AS). The linear subspace models utilized were principal component analysis (PCA) and Linear Discriminant Analysis (LDA). The two distance metrics were Euclidean and Cosine distance. The result showed that for databases with both illumination (shadows), and lighting (over-exposure) variations like the CAS PEAL database the Histogram remapping technique with normal distribution produced excellent result when the cosine distance is used as the classifier. The result indicated 65% recognition rate in 15.8 ms/img. Alternatively for databases consisting of pure illumination variation, like the extended Yale B database, the Gamma Intensity Correction (GIC) merged with the Euclidean distance metric gave the most accurate result with 95.4% recognition accuracy in 1ms/img. It was further gathered from the set of experiments that the cosine distance produces more accurate result compared to the Euclidean distance metric. However the Euclidean distance is faster than the cosine distance in all the experiments conducted

    Face recognition using multiple features in different color spaces

    Get PDF
    Face recognition as a particular problem of pattern recognition has been attracting substantial attention from researchers in computer vision, pattern recognition, and machine learning. The recent Face Recognition Grand Challenge (FRGC) program reveals that uncontrolled illumination conditions pose grand challenges to face recognition performance. Most of the existing face recognition methods use gray-scale face images, which have been shown insufficient to tackle these challenges. To overcome this challenging problem in face recognition, this dissertation applies multiple features derived from the color images instead of the intensity images only. First, this dissertation presents two face recognition methods, which operate in different color spaces, using frequency features by means of Discrete Fourier Transform (DFT) and spatial features by means of Local Binary Patterns (LBP), respectively. The DFT frequency domain consists of the real part, the imaginary part, the magnitude, and the phase components, which provide the different interpretations of the input face images. The advantage of LBP in face recognition is attributed to its robustness in terms of intensity-level monotonic transformation, as well as its operation in the various scale image spaces. By fusing the frequency components or the multi-resolution LBP histograms, the complementary feature sets can be generated to enhance the capability of facial texture description. This dissertation thus uses the fused DFT and LBP features in two hybrid color spaces, the RIQ and the VIQ color spaces, respectively, for improving face recognition performance. Second, a method that extracts multiple features in the CID color space is presented for face recognition. As different color component images in the CID color space display different characteristics, three different image encoding methods, namely, the patch-based Gabor image representation, the multi-resolution LBP feature fusion, and the DCT-based multiple face encodings, are presented to effectively extract features from the component images for enhancing pattern recognition performance. To further improve classification performance, the similarity scores due to the three color component images are fused for the final decision making. Finally, a novel image representation is also discussed in this dissertation. Unlike a traditional intensity image that is directly derived from a linear combination of the R, G, and B color components, the novel image representation adapted to class separability is generated through a PCA plus FLD learning framework from the hybrid color space instead of the RGB color space. Based upon the novel image representation, a multiple feature fusion method is proposed to address the problem of face recognition under the severe illumination conditions. The aforementioned methods have been evaluated using two large-scale databases, namely, the Face Recognition Grand Challenge (FRGC) version 2 database and the FERET face database. Experimental results have shown that the proposed methods improve face recognition performance upon the traditional methods using the intensity images by large margins and outperform some state-of-the-art methods

    DCTNet : A Simple Learning-free Approach for Face Recognition

    Full text link
    PCANet was proposed as a lightweight deep learning network that mainly leverages Principal Component Analysis (PCA) to learn multistage filter banks followed by binarization and block-wise histograming. PCANet was shown worked surprisingly well in various image classification tasks. However, PCANet is data-dependence hence inflexible. In this paper, we proposed a data-independence network, dubbed DCTNet for face recognition in which we adopt Discrete Cosine Transform (DCT) as filter banks in place of PCA. This is motivated by the fact that 2D DCT basis is indeed a good approximation for high ranked eigenvectors of PCA. Both 2D DCT and PCA resemble a kind of modulated sine-wave patterns, which can be perceived as a bandpass filter bank. DCTNet is free from learning as 2D DCT bases can be computed in advance. Besides that, we also proposed an effective method to regulate the block-wise histogram feature vector of DCTNet for robustness. It is shown to provide surprising performance boost when the probe image is considerably different in appearance from the gallery image. We evaluate the performance of DCTNet extensively on a number of benchmark face databases and being able to achieve on par with or often better accuracy performance than PCANet.Comment: APSIPA ASC 201

    Evaluating feature extractors and dimension reduction methods for near infrared face recognition systems

    Get PDF
    This study evaluates the performance of global and local feature extractors as well as dimension reduction methods in NIR domain. Zernike moments (ZMs), Independent Component Analysis (ICA), Radon Transform + Discrete Cosine Transform (RDCT), Radon Transform + Discrete Wavelet Transform (RDWT) are employed as global feature extractors and Local Binary Pattern (LBP), Gabor Wavelets (GW), Discrete Wavelet Transform (DWT) and Undecimated Discrete Wavelet Transform (UDWT) are used as local feature extractors. For evaluation of dimension reduction methods Principal Component Analysis (PCA), Kernel Principal Component Analysis (KPCA), Linear Discriminant Analysis + Principal Component Analysis (Fisherface), Kernel Fisher Discriminant Analysis (KFD) and Spectral Regression Discriminant Analysis (SRDA) are used. Experiments conducted on CASIA NIR database and PolyU-NIRFD database indicate that ZMs as a global feature extractor, UDWT as a local feature extractor and SRDA as a dimension reduction method have superior overall performance compared to some other methods in the presence of facial expressions, eyeglasses, head rotation, image noise and misalignments
    corecore