278 research outputs found

    Curvelet Based Feature Extraction

    Get PDF

    Wavelet-Based Enhancement Technique for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of color digital images based on wavelet transform domain are investigated in this dissertation research. In this research, a novel, fast and robust wavelet-based dynamic range compression and local contrast enhancement (WDRC) algorithm to improve the visibility of digital images captured under non-uniform lighting conditions has been developed. A wavelet transform is mainly used for dimensionality reduction such that a dynamic range compression with local contrast enhancement algorithm is applied only to the approximation coefficients which are obtained by low-pass filtering and down-sampling the original intensity image. The normalized approximation coefficients are transformed using a hyperbolic sine curve and the contrast enhancement is realized by tuning the magnitude of the each coefficient with respect to surrounding coefficients. The transformed coefficients are then de-normalized to their original range. The detail coefficients are also modified to prevent edge deformation. The inverse wavelet transform is carried out resulting in a lower dynamic range and contrast enhanced intensity image. A color restoration process based on the relationship between spectral bands and the luminance of the original image is applied to convert the enhanced intensity image back to a color image. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some pathological scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for tackling the color constancy problem. The illuminant is modeled having an effect on the image histogram as a linear shift and adjust the image histogram to discount the illuminant. The WDRC algorithm is then applied with a slight modification, i.e. instead of using a linear color restoration, a non-linear color restoration process employing the spectral context relationships of the original image is applied. The proposed technique solves the color constancy issue and the overall enhancement algorithm provides attractive results improving visibility even for scenes with near-zero visibility conditions. In this research, a new wavelet-based image interpolation technique that can be used for improving the visibility of tiny features in an image is presented. In wavelet domain interpolation techniques, the input image is usually treated as the low-pass filtered subbands of an unknown wavelet-transformed high-resolution (HR) image, and then the unknown high-resolution image is produced by estimating the wavelet coefficients of the high-pass filtered subbands. The same approach is used to obtain an initial estimate of the high-resolution image by zero filling the high-pass filtered subbands. Detail coefficients are estimated via feeding this initial estimate to an undecimated wavelet transform (UWT). Taking an inverse transform after replacing the approximation coefficients of the UWT with initially estimated HR image, results in the final interpolated image. Experimental results of the proposed algorithms proved their superiority over the state-of-the-art enhancement and interpolation techniques

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Wavelet–Based Face Recognition Schemes

    Get PDF

    A novel multispectral and 2.5D/3D image fusion camera system for enhanced face recognition

    Get PDF
    The fusion of images from the visible and long-wave infrared (thermal) portions of the spectrum produces images that have improved face recognition performance under varying lighting conditions. This is because long-wave infrared images are the result of emitted, rather than reflected, light and are therefore less sensitive to changes in ambient light. Similarly, 3D and 2.5D images have also improved face recognition under varying pose and lighting. The opacity of glass to long-wave infrared light, however, means that the presence of eyeglasses in a face image reduces the recognition performance. This thesis presents the design and performance evaluation of a novel camera system which is capable of capturing spatially registered visible, near-infrared, long-wave infrared and 2.5D depth video images via a common optical path requiring no spatial registration between sensors beyond scaling for differences in sensor sizes. Experiments using a range of established face recognition methods and multi-class SVM classifiers show that the fused output from our camera system not only outperforms the single modality images for face recognition, but that the adaptive fusion methods used produce consistent increases in recognition accuracy under varying pose, lighting and with the presence of eyeglasses

    Evaluation and Understandability of Face Image Quality Assessment

    Get PDF
    Face image quality assessment (FIQA) has been an area of interest to researchers as a way to improve the face recognition accuracy. By filtering out the low quality images we can reduce various difficulties faced in unconstrained face recognition, such as, failure in face or facial landmark detection or low presence of useful facial information. In last decade or so, researchers have proposed different methods to assess the face image quality, spanning from fusion of quality measures to using learning based methods. Different approaches have their own strength and weaknesses. But, it is hard to perform a comparative assessment of these methods without a database containing wide variety of face quality, a suitable training protocol that can efficiently utilize this large-scale dataset. In this thesis we focus on developing an evaluation platfrom using a large scale face database containing wide ranging face image quality and try to deconstruct the reason behind the predicted scores of learning based face image quality assessment methods. Contributions of this thesis is two-fold. Firstly, (i) a carefully crafted large scale database dedicated entirely to face image quality assessment has been proposed; (ii) a learning to rank based large-scale training protocol is devel- oped. Finally, (iii) a comprehensive study of 15 face image quality assessment methods using 12 different feature types, and relative ranking based label generation schemes, is performed. Evalua- tion results show various insights about the assessment methods which indicate the significance of the proposed database and the training protocol. Secondly, we have seen that in last few years, researchers have tried various learning based approaches to assess the face image quality. Most of these methods offer either a quality bin or a score summary as a measure of the biometric quality of the face image. But, to the best of our knowledge, so far there has not been any investigation on what are the explainable reasons behind the predicted scores. In this thesis, we propose a method to provide a clear and concise understanding of the predicted quality score of a learning based face image quality assessment. It is believed that this approach can be integrated into the FBI’s understandable template and can help in improving the image acquisition process by providing information on what quality factors need to be addressed

    A mobile image enhancement technology for visually impaired

    Get PDF
    In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed

    Design and Analysis of A New Illumination Invariant Human Face Recognition System

    Get PDF
    In this dissertation we propose the design and analysis of a new illumination invariant face recognition system. We show that the multiscale analysis of facial structure and features of face images leads to superior recognition rates for images under varying illumination. We assume that an image I ( x,y ) is a black box consisting of a combination of illumination and reflectance. A new approximation is proposed to enhance the illumination removal phase. As illumination resides in the low-frequency part of images, a high-performance multiresolution transformation is employed to accurately separate the frequency contents of input images. The procedure is followed by a fine-tuning process. After extracting a mask, feature vector is formed and the principal component analysis (PCA) is used for dimensionality reduction which is then proceeded by the extreme learning machine (ELM) as a classifier. We then analyze the effect of the frequency selectivity of subbands of the transformation on the performance of the proposed face recognition system. In fact, we first propose a method to tune the characteristics of a multiresolution transformation, and then analyze how these specifications may affect the recognition rate. In addition, we show that the proposed face recognition system can be further improved in terms of the computational time and accuracy. The motivation for this progress is related to the fact that although illumination mostly lies in the low-frequency part of images, these low-frequency components may have low- or high-resonance nature. Therefore, for the first time, we introduce the resonance based analysis of face images rather than the traditional frequency domain approaches. We found that energy selectivity of the subbands of the resonance based decomposition can lead to superior results with less computational complexity. The method is free of any prior information about the face shape. It is systematic and can be applied separately on each image. Several experiments are performed employing the well known databases such as the Yale B, Extended-Yale B, CMU-PIE, FERET, AT&T, and LFW. Illustrative examples are given and the results confirm the effectiveness of the method compared to the current results in the literature

    Perceptually inspired image estimation and enhancement

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.Includes bibliographical references (p. 137-144).In this thesis, we present three image estimation and enhancement algorithms inspired by human vision. In the first part of the thesis, we propose an algorithm for mapping one image to another based on the statistics of a training set. Many vision problems can be cast as image mapping problems, such as, estimating reflectance from luminance, estimating shape from shading, separating signal and noise, etc. Such problems are typically under-constrained, and yet humans are remarkably good at solving them. Classic computational theories about the ability of the human visual system to solve such under-constrained problems attribute this feat to the use of some intuitive regularities of the world, e.g., surfaces tend to be piecewise constant. In recent years, there has been considerable interest in deriving more sophisticated statistical constraints from natural images, but because of the high-dimensional nature of images, representing and utilizing the learned models remains a challenge. Our techniques produce models that are very easy to store and to query. We show these techniques to be effective for a number of applications: removing noise from images, estimating a sharp image from a blurry one, decomposing an image into reflectance and illumination, and interpreting lightness illusions. In the second part of the thesis, we present an algorithm for compressing the dynamic range of an image while retaining important visual detail. The human visual system confronts a serious challenge with dynamic range, in that the physical world has an extremely high dynamic range, while neurons have low dynamic ranges.(cont.) The human visual system performs dynamic range compression by applying automatic gain control, in both the retina and the visual cortex. Taking inspiration from that, we designed techniques that involve multi-scale subband transforms and smooth gain control on subband coefficients, and resemble the contrast gain control mechanism in the visual cortex. We show our techniques to be successful in producing dynamic-range-compressed images without compromising the visibility of detail or introducing artifacts. We also show that the techniques can be adapted for the related problem of "companding", in which a high dynamic range image is converted to a low dynamic range image and saved using fewer bits, and later expanded back to high dynamic range with minimal loss of visual quality. In the third part of the thesis, we propose a technique that enables a user to easily localize image and video editing by drawing a small number of rough scribbles. Image segmentation, usually treated as an unsupervised clustering problem, is extremely difficult to solve. With a minimal degree of user supervision, however, we are able to generate selection masks with good quality. Our technique learns a classifier using the user-scribbled pixels as training examples, and uses the classifier to classify the rest of the pixels into distinct classes. It then uses the classification results as per-pixel data terms, combines them with a smoothness term that respects color discontinuities, and generates better results than state-of-art algorithms for interactive segmentation.by Yuanzhen Li.Ph.D
    corecore