75 research outputs found

    Towards the Mitigation of Correlation Effects in the Analysis of Hyperspectral Imagery with Extension to Robust Parameter Design

    Get PDF
    Standard anomaly detectors and classifiers assume data to be uncorrelated and homogeneous, which is not inherent in Hyperspectral Imagery (HSI). To address the detection difficulty, a new method termed Iterative Linear RX (ILRX) uses a line of pixels which shows an advantage over RX, in that it mitigates some of the effects of correlation due to spatial proximity; while the iterative adaptation from Iterative Linear RX (IRX) simultaneously eliminates outliers. In this research, the application of classification algorithms using anomaly detectors to remove potential anomalies from mean vector and covariance matrix estimates and addressing non-homogeneity through cluster analysis, both of which are often ignored when detecting or classifying anomalies, are shown to improve algorithm performance. Global anomaly detectors require the user to provide various parameters to analyze an image. These user-defined settings can be thought of as control variables and certain properties of the imagery can be employed as noise variables. The presence of these separate factors suggests the use of Robust Parameter Design (RPD) to locate optimal settings for an algorithm. This research extends the standard RPD model to include three factor interactions. These new models are then applied to the Autonomous Global Anomaly Detector (AutoGAD) to demonstrate improved setting combinations

    Design of cold-formed stainless steel structural members proposed allowable stress design specification with commentary

    Get PDF
    INTRODUCTION This progress report on the design of cold-formed stainless steel structural members contains the following two parts: Part I: Proposed Specification for the Design of Cold-Formed Stainless Steel Structural Members (Third Draft). Part II: Commentary on the Proposed Specification for the Design of Cold-Formed Stainless Steel Structural Members (Second Draft). This project was sponsored by the American Society of Civil Engineers. The financial assistance provided by the Chromium Center, the Nickel Development Institute, and the Specialty Steel Industry of the United States is gratefully acknowledged. Special thanks are extended to members of the ASCE Steering Committee (Dr. Ivan M. Viest, Mr. Don S. Wolford, and Mr. John P. Ziemianski), Mr. Edwin Jones of the American Society of Civil Engineers, Dr. W. K. Armitage of the Chromium Center, and Mr. Johannes P. Schade of the Nickel Development Institute for their technical guidance. Appreciation is also expressed to Mr. Ziemianski and Professor van der Merwe for providing the technical information on Types 409, 430, and 439

    Optimized Hyperspectral Imagery Anomaly Detection Through Robust Parameter Design

    Get PDF
    Anomaly detection algorithms for hyperspectral imagery (HSI) are an important first step in the analysis chain which can reduce the overall amount of data to be processed. The actual amount of data reduced depends greatly on the accuracy of the anomaly detection algorithm implemented. Most, if not all, anomaly detection algorithms require a user to identify some initial parameters. These parameters (or controls) affect overall algorithm performance. Regardless of the anomaly detector being utilized, algorithm performance is often negatively impacted by uncontrollable noise factors which introduce additional variance into the process. In the case of HSI, the noise variables are embedded in the image under consideration. Robust parameter design (RPD) offers a method to model the controls as well as the noise variables and identify robust parameters. This research identifies image noise characteristics necessary to perform RPD on HSI. Additionally, a small sample training and test algorithm is presented. Finally, the standard RPD model is extended to consider higher order noise coefficients. Mean and variance RPD models are optimized in a dual response function suggested by Lin and Tu. Results are presented from simulations and two anomaly detection algorithms, the Reed-Xiaoli anomaly detector and the autonomous global anomaly detector

    Subband beamforming with higher order statistics for distant speech recognition

    Get PDF
    This dissertation presents novel beamforming methods for distant speech recognition (DSR). Such techniques can relieve users from the necessity of putting on close talking microphones. DSR systems are useful in many applications such as humanoid robots, voice control systems for automobiles, automatic meeting transcription systems and so on. A main problem in DSR is that recognition performance is seriously degraded when a speaker is far from the microphones. In order to avoid the degradation, noise and reverberation should be removed from signals received with the microphones. Acoustic beamforming techniques have a potential to enhance speech from the far field with little distortion since they can maintain a distortionless constraint for a look direction. In beamforming, multiple signals propagating from a position are captured with multiple microphones. Typical conventional beamformers then adjust their weights so as to minimize the variance of their own outputs subject to a distortionless constraint in a look direction. The variance is the average of the second power (square) of the beamformer\u27s outputs. Accordingly, it is considered that the conventional beamformer uses second orderstatistics (SOS) of the beamformer\u27s outputs. The conventional beamforming techniques can effectively place a null on any source of interference. However, the desired signal is also canceled in reverberant environments, which is known as the signal cancellation problem. To avoid that problem, many algorithms have been developed. However, none of the algorithms can essentially solve the signal cancellation problem in reverberant environments. While many efforts have been made in order to overcome the signal cancellation problem in the field of acoustic beamforming, researchers have addressed another research issue with the microphone array, that is, blind source separation (BSS) [1]. The BSS techniques aim at separating sources from the mixture of signals without information about the geometry of the microphone array and positions of sources. It is achieved by multiplying an un-mixing matrix with input signals. The un-mixing matrix is constructed so that the outputs are stochastically independent. Measuring the stochastic independence of the signals is based on the theory of the independent component analysis (ICA) [1]. The field of ICA is based on the fact that distributions of information-bearing signals are not Gaussian and distributions of sums of various signals are close to Gaussian. There are two popular criteria for measuring the degree of the non-Gaussianity, namely, kurtosis and negentropy. As described in detail in this thesis, both criteria use more than the second moment. Accordingly, it is referred to as higher order statistics (HOS) in contrast to SOS. HOS is not considered in the field of acoustic beamforming well although Arai et al. showed the similarity between acoustic beamforming and BSS [2]. This thesis investigates new beamforming algorithms which take into consideration higher-order statistics (HOS). The new beamforming methods adjust the beamformer\u27s weights based on one of the following criteria: • minimum mutual information of the two beamformer\u27s outputs, • maximum negentropy of the beamformer\u27s outputs and • maximum kurtosis of the beamformer\u27s outputs. Those algorithms do not suffer from the signal cancellation, which is shown in this thesis. Notice that the new beamforming techniques can keep the distortionless constraint for the direction of interest in contrast to the BSS algorithms. The effectiveness of the new techniques is finally demonstrated through a series of distant automatic speech recognition experiments on real data recorded with real sensors unlike other work where signals artificially convolved with measured impulse responses are considered. Significant improvements are achieved by the beamforming algorithms proposed here.Diese Dissertation präsentiert neue Methoden zur Spracherkennung auf Entfernung. Mit diesen Methoden ist es möglich auf Nahbesprechungsmikrofone zu verzichten. Spracherkennungssysteme, die auf Nahbesprechungsmikrofone verzichten, sind in vielen Anwendungen nützlich, wie zum Beispiel bei Humanoiden-Robotern, in Voice Control Systemen für Autos oder bei automatischen Transcriptionssystemen von Meetings. Ein Hauptproblem in der Spracherkennung auf Entfernung ist, dass mit zunehmendem Abstand zwischen Sprecher und Mikrofon, die Genauigkeit der Spracherkennung stark abnimmt. Aus diesem Grund ist es elementar die Störungen, nämlich Hintergrundgeräusche, Hall und Echo, aus den Mikrofonsignalen herauszurechnen. Durch den Einsatz von mehreren Mikrofonen ist eine räumliche Trennung des Nutzsignals von den Störungen möglich. Diese Methode wird als akustisches Beamformen bezeichnet. Konventionelle akustische Beamformer passen ihre Gewichte so an, dass die Varianz des Ausgangssignals minimiert wird, wobei das Signal in "Blickrichtung" die Bedingung der Verzerrungsfreiheit erfüllen muss. Die Varianz ist definiert als das quadratische Mittel des Ausgangssignals.Somit werden bei konventionellen Beamformingmethoden Second-Order Statistics (SOS) des Ausgangssignals verwendet. Konventionelle Beamformer können Störquellen effizient unterdrücken, aber leider auch das Nutzsignal. Diese unerwünschte Unterdrückung des Nutzsignals wird im Englischen signal cancellation genannt und es wurden bereits viele Algorithmen entwickelt um dies zu vermeiden. Keiner dieser Algorithmen, jedoch, funktioniert effektiv in verhallter Umgebung. Eine weitere Methode das Nutzsignal von den Störungen zu trennen, diesesmal jedoch ohne die geometrische Information zu nutzen, wird Blind Source Separation (BSS) [1] genannt. Hierbei wird eine Matrixmultiplikation mit dem Eingangssignal durchgeführt. Die Matrix muss so konstruiert werden, dass die Ausgangssignale statistisch unabhängig voneinander sind. Die statistische Unabhängigkeit wird mit der Theorie der Independent Component Analysis (ICA) gemessen [1]. Die ICA nimmt an, dass informationstragende Signale, wie z.B. Sprache, nicht gaußverteilt sind, wohingegen die Summe der Signale, z.B. das Hintergrundrauschen, gaußverteilt sind. Es gibt zwei gängige Arten um den Grad der Nichtgaußverteilung zu bestimmen, Kurtosis und Negentropy. Wie in dieser Arbeit beschrieben, werden hierbei höhere Momente als das zweite verwendet und somit werden diese Methoden als Higher-Order Statistics (HOS) bezeichnet. Obwohl Arai et al. zeigten, dass sich Beamforming und BSS ähnlich sind, werden HOS beim akustischen Beamforming bisher nicht verwendet [2] und beruhen weiterhin auf SOS. In der hier vorliegenden Dissertation werden neue Beamformingalgorithmen entwickelt und evaluiert, die auf HOS basieren. Die neuen Beamformingmethoden passen ihre Gewichte anhand eines der folgenden Kriterien an: • Minimum Mutual Information zweier Beamformer Ausgangssignale • Maximum Negentropy der Beamformer Ausgangssignale und • Maximum Kurtosis der Beamformer Ausgangssignale. Es wird anhand von Spracherkennerexperimenten (gemessen in Wortfehlerrate) gezeigt, dass die hier entwickelten Beamformingtechniken auch erfolgreich Störquellen in verhallten Umgebungen unterdrücken, was ein klarer Vorteil gegenüber den herkömmlichen Methoden ist

    Development of technology for the fabrication of reliable laminar flow control panels on subsonic transports

    Get PDF
    The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed

    STK /WST 795 Research Reports

    Get PDF
    These documents contain the honours research reports for each year for the Department of Statistics.Honours Research Reports - University of Pretoria 20XXStatisticsBSs (Hons) Mathematical Statistics, BCom (Hons) Statistics, BCom (Hons) Mathematical StatisticsUnrestricte

    Low Voltage Scanning Electron Microscopy

    Get PDF
    The scanning electron microscope (SEM) usually operates with a beam voltage, V0, in the range of 10-30 kV, even though many early workers suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage. The chief reason for this contradiction is low instrumental performance when V0 = 1-3 kV. The problems include low source brightness, greater defocussing due to chromatic aberration, greater sensitivity to internal and external stray fields and difficulty in collecting the secondary electron signal without defocussing the probe. Recently considerable efforts have been made to overcome these problems because the semi-conductor industry, which is now the major user of the SEM, has found that low V0 is necessary to reduce beam damage. The resulting equipment has greatly improved performance at low kV and substantially removes the practical deterrents to operation in this mode on other types of samples. This paper reviews the advantages of low voltage operation for topographic imaging, recent progress in instrumentation and describes a prototype instrument designed and built for optimum performance at 1 kV. Other limitations to high resolution topographic imaging such as surface contamination, the de-localized nature of the in-elastic scattering event and radiation damage are also discussed
    • …
    corecore