2,415 research outputs found

    Shape Primitive Histogram: A Novel Low-Level Face Representation for Face Recognition

    Full text link
    We further exploit the representational power of Haar wavelet and present a novel low-level face representation named Shape Primitives Histogram (SPH) for face recognition. Since human faces exist abundant shape features, we address the face representation issue from the perspective of the shape feature extraction. In our approach, we divide faces into a number of tiny shape fragments and reduce these shape fragments to several uniform atomic shape patterns called Shape Primitives. A convolution with Haar Wavelet templates is applied to each shape fragment to identify its belonging shape primitive. After that, we do a histogram statistic of shape primitives in each spatial local image patch for incorporating the spatial information. Finally, each face is represented as a feature vector via concatenating all the local histograms of shape primitives. Four popular face databases, namely ORL, AR, Yale-B and LFW-a databases, are employed to evaluate SPH and experimentally study the choices of the parameters. Extensive experimental results demonstrate that the proposed approach outperform the state-of-the-arts.Comment: second version, two columns and 11 page

    Face Recognition: From Traditional to Deep Learning Methods

    Full text link
    Starting in the seventies, face recognition has become one of the most researched topics in computer vision and biometrics. Traditional methods based on hand-crafted features and traditional machine learning techniques have recently been superseded by deep neural networks trained with very large datasets. In this paper we provide a comprehensive and up-to-date literature review of popular face recognition methods including both traditional (geometry-based, holistic, feature-based and hybrid methods) and deep learning methods

    Automatic Facial Expression Recognition Using Features of Salient Facial Patches

    Full text link
    Extraction of discriminative features from salient facial patches plays a vital role in effective facial expression recognition. The accurate detection of facial landmarks improves the localization of the salient patches on face images. This paper proposes a novel framework for expression recognition by using appearance features of selected facial patches. A few prominent facial patches, depending on the position of facial landmarks, are extracted which are active during emotion elicitation. These active patches are further processed to obtain the salient patches which contain discriminative features for classification of each pair of expressions, thereby selecting different facial patches as salient for different pair of expression classes. One-against-one classification method is adopted using these features. In addition, an automated learning-free facial landmark detection technique has been proposed, which achieves similar performances as that of other state-of-art landmark detection methods, yet requires significantly less execution time. The proposed method is found to perform well consistently in different resolutions, hence, providing a solution for expression recognition in low resolution images. Experiments on CK+ and JAFFE facial expression databases show the effectiveness of the proposed system

    Illumination Normalization via Merging Locally Enhanced Textures for Robust Face Recognition

    Full text link
    In order to improve the accuracy of face recognition under varying illumination conditions, a local texture enhanced illumination normalization method based on fusion of differential filtering images (FDFI-LTEIN) is proposed to weaken the influence caused by illumination changes. Firstly, the dynamic range of the face image in dark or shadowed regions is expanded by logarithmic transformation. Then, the global contrast enhanced face image is convolved with difference of Gaussian filters and difference of bilateral filters, and the filtered images are weighted and merged using a coefficient selection rule based on the standard deviation (SD) of image, which can enhance image texture information while filtering out most noise. Finally, the local contrast equalization (LCE) is performed on the fused face image to reduce the influence caused by over or under saturated pixel values in highlight or dark regions. Experimental results on the Extended Yale B face database and CMU PIE face database demonstrate that the proposed method is more robust to illumination changes and achieve higher recognition accuracy when compared with other illumination normalization methods and a deep CNNs based illumination invariant face recognition methodComment: 10 page

    Real time face recognition using adaboost improved fast PCA algorithm

    Full text link
    This paper presents an automated system for human face recognition in a real time background world for a large homemade dataset of persons face. The task is very difficult as the real time background subtraction in an image is still a challenge. Addition to this there is a huge variation in human face image in terms of size, pose and expression. The system proposed collapses most of this variance. To detect real time human face AdaBoost with Haar cascade is used and a simple fast PCA and LDA is used to recognize the faces detected. The matched face is then used to mark attendance in the laboratory, in our case. This biometric system is a real time attendance system based on the human face recognition with a simple and fast algorithms and gaining a high accuracy rate..Comment: 14 pages; ISSN : 0975-900X (Online), 0976-2191 (Print

    PCANet: A Simple Deep Learning Baseline for Image Classification?

    Full text link
    In this work, we propose a very simple deep learning network for image classification which comprises only the very basic data processing components: cascaded principal component analysis (PCA), binary hashing, and block-wise histograms. In the proposed architecture, PCA is employed to learn multistage filter banks. It is followed by simple binary hashing and block histograms for indexing and pooling. This architecture is thus named as a PCA network (PCANet) and can be designed and learned extremely easily and efficiently. For comparison and better understanding, we also introduce and study two simple variations to the PCANet, namely the RandNet and LDANet. They share the same topology of PCANet but their cascaded filters are either selected randomly or learned from LDA. We have tested these basic networks extensively on many benchmark visual datasets for different tasks, such as LFW for face verification, MultiPIE, Extended Yale B, AR, FERET datasets for face recognition, as well as MNIST for hand-written digits recognition. Surprisingly, for all tasks, such a seemingly naive PCANet model is on par with the state of the art features, either prefixed, highly hand-crafted or carefully learned (by DNNs). Even more surprisingly, it sets new records for many classification tasks in Extended Yale B, AR, FERET datasets, and MNIST variations. Additional experiments on other public datasets also demonstrate the potential of the PCANet serving as a simple but highly competitive baseline for texture classification and object recognition

    The Indian Spontaneous Expression Database for Emotion Recognition

    Full text link
    Automatic recognition of spontaneous facial expressions is a major challenge in the field of affective computing. Head rotation, face pose, illumination variation, occlusion etc. are the attributes that increase the complexity of recognition of spontaneous expressions in practical applications. Effective recognition of expressions depends significantly on the quality of the database used. Most well-known facial expression databases consist of posed expressions. However, currently there is a huge demand for spontaneous expression databases for the pragmatic implementation of the facial expression recognition algorithms. In this paper, we propose and establish a new facial expression database containing spontaneous expressions of both male and female participants of Indian origin. The database consists of 428 segmented video clips of the spontaneous facial expressions of 50 participants. In our experiment, emotions were induced among the participants by using emotional videos and simultaneously their self-ratings were collected for each experienced emotion. Facial expression clips were annotated carefully by four trained decoders, which were further validated by the nature of stimuli used and self-report of emotions. An extensive analysis was carried out on the database using several machine learning algorithms and the results are provided for future reference. Such a spontaneous database will help in the development and validation of algorithms for recognition of spontaneous expressions.Comment: in IEEE Transactions on Affective Computing, 201

    The Cross-Depiction Problem: Computer Vision Algorithms for Recognising Objects in Artwork and in Photographs

    Full text link
    The cross-depiction problem is that of recognising visual objects regardless of whether they are photographed, painted, drawn, etc. It is a potentially significant yet under-researched problem. Emulating the remarkable human ability to recognise objects in an astonishingly wide variety of depictive forms is likely to advance both the foundations and the applications of Computer Vision. In this paper we benchmark classification, domain adaptation, and deep learning methods; demonstrating that none perform consistently well in the cross-depiction problem. Given the current interest in deep learning, the fact such methods exhibit the same behaviour as all but one other method: they show a significant fall in performance over inhomogeneous databases compared to their peak performance, which is always over data comprising photographs only. Rather, we find the methods that have strong models of spatial relations between parts tend to be more robust and therefore conclude that such information is important in modelling object classes regardless of appearance details.Comment: 12 pages, 6 figure

    Machine Learning Techniques and Applications For Ground-based Image Analysis

    Full text link
    Ground-based whole sky cameras have opened up new opportunities for monitoring the earth's atmosphere. These cameras are an important complement to satellite images by providing geoscientists with cheaper, faster, and more localized data. The images captured by whole sky imagers can have high spatial and temporal resolution, which is an important pre-requisite for applications such as solar energy modeling, cloud attenuation analysis, local weather prediction, etc. Extracting valuable information from the huge amount of image data by detecting and analyzing the various entities in these images is challenging. However, powerful machine learning techniques have become available to aid with the image analysis. This article provides a detailed walk-through of recent developments in these techniques and their applications in ground-based imaging. We aim to bridge the gap between computer vision and remote sensing with the help of illustrative examples. We demonstrate the advantages of using machine learning techniques in ground-based image analysis via three primary applications -- segmentation, classification, and denoising

    Vision-based Human Gender Recognition: A Survey

    Full text link
    Gender is an important demographic attribute of people. This paper provides a survey of human gender recognition in computer vision. A review of approaches exploiting information from face and whole body (either from a still image or gait sequence) is presented. We highlight the challenges faced and survey the representative methods of these approaches. Based on the results, good performance have been achieved for datasets captured under controlled environments, but there is still much work that can be done to improve the robustness of gender recognition under real-life environments.Comment: 30 page
    • …
    corecore