2,129 research outputs found

    Globally maximizing, locally minimizing : unsupervised discriminant projection with applications to face and palm biometrics

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A Lens-Calibrated Active Marker Metrology System

    Get PDF
    This paper presents a prototypical marker tracking system, MT, which is capable of recording multiple mobile robot trajectories in parallel for offline analysis. The system is also capable of providing trajectory data in realtime to agents (such as robots in an arena) and implements several multi-agent operators to simplify agent-based perception. The latter characteristic provides an ability to minimise the normally expensive process of implementing agent-centric perceptual mechanisms and provides a means for multiagent "global knowledge" (Parker 1993)

    Robust Image Recognition Based on a New Supervised Kernel Subspace Learning Method

    Get PDF
    Fecha de lectura de Tesis Doctoral: 13 de septiembre 2019Image recognition is a term for computer technologies that can recognize certain people, objects or other targeted subjects through the use of algorithms and machine learning concepts. Face recognition is one of the most popular techniques to achieve the goal of figuring out the identity of a person. This study has been conducted to develop a new non-linear subspace learning method named “supervised kernel locality-based discriminant neighborhood embedding,” which performs data classification by learning an optimum embedded subspace from a principal high dimensional space. In this approach, not only is a nonlinear and complex variation of face images effectively represented using nonlinear kernel mapping, but local structure information of data from the same class and discriminant information from distinct classes are also simultaneously preserved to further improve final classification performance. Moreover, to evaluate the robustness of the proposed method, it was compared with several well-known pattern recognition methods through comprehensive experiments with six publicly accessible datasets. In this research, we particularly focus on face recognition however, two other types of databases rather than face databases are also applied to well investigate the implementation of our algorithm. Experimental results reveal that our method consistently outperforms its competitors across a wide range of dimensionality on all the datasets. SKLDNE method has reached 100 percent of recognition rate for Tn=17 on the Sheffield, 9 on the Yale, 8 on the ORL, 7 on the Finger vein and 11on the Finger Knuckle respectively, while the results are much lower for other methods. This demonstrates the robustness and effectiveness of the proposed method

    A novel on-board Unit to accelerate the penetration of ITS services

    Get PDF
    In-vehicle connectivity has experienced a big expansion in recent years. Car manufacturers have mainly proposed OBU-based solutions, but these solutions do not take full advantage of the opportunities of inter-vehicle peer-to-peer communications. In this paper we introduce GRCBox, a novel architecture that allows OEM user-devices to directly communicate when located in neighboring vehicles. In this paper we also describe EYES, an application we developed to illustrate the type of novel applications that can be implemented on top of the GRCBox. EYES is an ITS overtaking assistance system that provides the driver with real-time video fed from the vehicle located in front. Finally, we evaluated the GRCbox and the EYES application and showed that, for device-to-device communication, the performance of the GRCBox architecture is comparable to an infrastructure network, introducing a negligible impact

    UDP-YOLO: High Efficiency and Real-Time Performance of Autonomous Driving Technology

    Get PDF
    In recent years, autonomous driving technology has gradually appeared in our field of vision. It senses the surrounding environment by using radar, laser, ultrasound, GPS, computer vision and other technologies, and then identifies obstacles and various signboards, and plans a suitable path to control the driving of vehicles. However, some problems occur when this technology is applied in foggy environment, such as the low probability of recognizing objects, or the fact that some objects cannot be recognized because the fog's fuzzy degree makes the planned path wrong. In view of this defect, and considering that automatic driving technology needs to respond quickly to objects when driving, this paper extends the prior defogging algorithm of dark channel, and proposes UDP-YOLO network to apply it to automatic driving technology. This paper is mainly divided into two parts: 1. Image processing: firstly, the data set is discriminated whether there is fog or not, then the fogged data set is defogged by defogging algorithm, and finally, the defogged data set is subjected to adaptive brightness enhancement; 2. Target detection: UDP-YOLO network proposed in this paper is used to detect the defogged data set. Through the observation results, it is found that the performance of the model proposed in this paper has been greatly improved while balancing the speed

    Multi-layer Perceptron Model for Mitigating Distributed Denial of Service Flood Attack in Internet Kiosk Based Electronic Voting

    Get PDF
    Distributed Denial-of-Service (DDoS) flood attack targeting an Internet Kiosk voting environment can deprive voters from casting their ballots in a timely manner. The goal of the DDoS flood attack is to make voting server unavailable to voters during election process. In this paper, we present a Multilayer Perceptron (MLP) algorithm to mitigate DDoS flood attack in an e-voting environment and prevent such attack from disrupting availability of the vulnerable voting server. The developed intelligent DDoS flood mitigation model based on MLP Technique was simulated in MATLAB R2017a. The mitigation model was evaluated using server utilization performance metrics in e-voting. The results after the introduction of the developed mitigation model into the DDoS attack model reduced the server utilization from 1 to 0.4 indicating normal traffic. MLP showed an accuracy of 95% in mitigating DDoS flood attacks providing availability of voting server resources for convenient and timely casting of ballots as well as provide for credible delivery of electronic democratic decision making
    corecore