1,738 research outputs found

    Machine Analysis of Facial Expressions

    Get PDF
    No abstract

    CNN-XGBoost fusion-based affective state recognition using EEG spectrogram image analysis

    Get PDF
    Recognizing emotional state of human using brain signal is an active research domain with several open challenges. In this research, we propose a signal spectrogram image based CNN-XGBoost fusion method for recognising three dimensions of emotion, namely arousal (calm or excitement), valence (positive or negative feeling) and dominance (without control or empowered). We used a benchmark dataset called DREAMER where the EEG signals were collected from multiple stimulus along with self-evaluation ratings. In our proposed method, we first calculate the Short-Time Fourier Transform (STFT) of the EEG signals and convert them into RGB images to obtain the spectrograms. Then we use a two dimensional Convolutional Neural Network (CNN) in order to train the model on the spectrogram images and retrieve the features from the trained layer of the CNN using a dense layer of the neural network. We apply Extreme Gradient Boosting (XGBoost) classifier on extracted CNN features to classify the signals into arousal, valence and dominance of human emotion. We compare our results with the feature fusion-based state-of-the-art approaches of emotion recognition. To do this, we applied various feature extraction techniques on the signals which include Fast Fourier Transformation, Discrete Cosine Transformation, Poincare, Power Spectral Density, Hjorth parameters and some statistical features. Additionally, we use Chi-square and Recursive Feature Elimination techniques to select the discriminative features. We form the feature vectors by applying feature level fusion, and apply Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) classifiers on the fused features to classify different emotion levels. The performance study shows that the proposed spectrogram image based CNN-XGBoost fusion method outperforms the feature fusion-based SVM and XGBoost methods. The proposed method obtained the accuracy of 99.712% for arousal, 99.770% for valence and 99.770% for dominance in human emotion detection.publishedVersio

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods

    Bio-signal based control in assistive robots: a survey

    Get PDF
    Recently, bio-signal based control has been gradually deployed in biomedical devices and assistive robots for improving the quality of life of disabled and elderly people, among which electromyography (EMG) and electroencephalography (EEG) bio-signals are being used widely. This paper reviews the deployment of these bio-signals in the state of art of control systems. The main aim of this paper is to describe the techniques used for (i) collecting EMG and EEG signals and diving these signals into segments (data acquisition and data segmentation stage), (ii) dividing the important data and removing redundant data from the EMG and EEG segments (feature extraction stage), and (iii) identifying categories from the relevant data obtained in the previous stage (classification stage). Furthermore, this paper presents a summary of applications controlled through these two bio-signals and some research challenges in the creation of these control systems. Finally, a brief conclusion is summarized

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF

    Automatic Person Verification Using Speech and Face Information

    Get PDF
    Interest in biometric based identification and verification systems has increased considerably over the last decade. As an example, the shortcomings of security systems based on passwords can be addressed through the supplemental use of biometric systems based on speech signals, face images or fingerprints. Biometric recognition can also be applied to other areas, such as passport control (immigration checkpoints), forensic work (to determine whether a biometric sample belongs to a suspect) and law enforcement applications (e.g. surveillance). While biometric systems based on face images and/or speech signals can be useful, their performance can degrade in the presence of challenging conditions. In face based systems this can be in the form of a change in the illumination direction and/or face pose variations. Multi-modal systems use more than one biometric at the same time. This is done for two main reasons -- to achieve better robustness and to increase discrimination power. This thesis reviews relevant backgrounds in speech and face processing, as well as information fusion. It reports research aimed at increasing the robustness of single- and multi-modal biometric identity verification systems. In particular, it addresses the illumination and pose variation problems in face recognition, as well as the challenge of effectively fusing information from multiple modalities under non-ideal conditions

    From data acquisition to data fusion : a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices

    Get PDF
    This paper focuses on the research on the state of the art for sensor fusion techniques, applied to the sensors embedded in mobile devices, as a means to help identify the mobile device user’s daily activities. Sensor data fusion techniques are used to consolidate the data collected from several sensors, increasing the reliability of the algorithms for the identification of the different activities. However, mobile devices have several constraints, e.g., low memory, low battery life and low processing power, and some data fusion techniques are not suited to this scenario. The main purpose of this paper is to present an overview of the state of the art to identify examples of sensor data fusion techniques that can be applied to the sensors available in mobile devices aiming to identify activities of daily living (ADLs)
    • …
    corecore