735 research outputs found

    Towards Realistic Facial Expression Recognition

    Get PDF
    Automatic facial expression recognition has attracted significant attention over the past decades. Although substantial progress has been achieved for certain scenarios (such as frontal faces in strictly controlled laboratory settings), accurate recognition of facial expression in realistic environments remains unsolved for the most part. The main objective of this thesis is to investigate facial expression recognition in unconstrained environments. As one major problem faced by the literature is the lack of realistic training and testing data, this thesis presents a web search based framework to collect realistic facial expression dataset from the Web. By adopting an active learning based method to remove noisy images from text based image search results, the proposed approach minimizes the human efforts during the dataset construction and maximizes the scalability for future research. Various novel facial expression features are then proposed to address the challenges imposed by the newly collected dataset. Finally, a spectral embedding based feature fusion framework is presented to combine the proposed facial expression features to form a more descriptive representation. This thesis also systematically investigates how the number of frames of a facial expression sequence can affect the performance of facial expression recognition algorithms, since facial expression sequences may be captured under different frame rates in realistic scenarios. A facial expression keyframe selection method is proposed based on keypoint based frame representation. Comprehensive experiments have been performed to demonstrate the effectiveness of the presented methods

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Facial Expression Recognition Based on Local Binary Patterns and Kernel Discriminant Isomap

    Get PDF
    Facial expression recognition is an interesting and challenging subject. Considering the nonlinear manifold structure of facial images, a new kernel-based manifold learning method, called kernel discriminant isometric mapping (KDIsomap), is proposed. KDIsomap aims to nonlinearly extract the discriminant information by maximizing the interclass scatter while minimizing the intraclass scatter in a reproducing kernel Hilbert space. KDIsomap is used to perform nonlinear dimensionality reduction on the extracted local binary patterns (LBP) facial features, and produce low-dimensional discrimimant embedded data representations with striking performance improvement on facial expression recognition tasks. The nearest neighbor classifier with the Euclidean metric is used for facial expression classification. Facial expression recognition experiments are performed on two popular facial expression databases, i.e., the JAFFE database and the Cohn-Kanade database. Experimental results indicate that KDIsomap obtains the best accuracy of 81.59% on the JAFFE database, and 94.88% on the Cohn-Kanade database. KDIsomap outperforms the other used methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel principal component analysis (KPCA), kernel linear discriminant analysis (KLDA) as well as kernel isometric mapping (KIsomap)

    Automatic age estimation system for face images

    Full text link
    Humans are the most important tracking objects in surveillance systems. However, human tracking is not enough to provide the required information for personalized recognition. In this paper, we present a novel and reliable framework for automatic age estimation based on computer vision. It exploits global face features based on the combination of Gabor wavelets and orthogonal locality preserving projections. In addition, the proposed system can extract face aging features automatically in real-time. This means that the proposed system has more potential in applications compared to other semi-automatic systems. The results obtained from this novel approach could provide clearer insight for operators in the field of age estimation to develop real-world applications. © 2012 Lin et al

    Effects of cultural characteristics on building an emotion classifier through facial expression analysis

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Facial expressions are an important demonstration of humanity's humors and emotions. Algorithms capable of recognizing facial expressions and associating them with emotions were developed and employed to compare the expressions that different cultural groups use to show their emotions. Static pictures of predominantly occidental and oriental subjects from public datasets were used to train machine learning algorithms, whereas local binary patterns, histogram of oriented gradients (HOGs), and Gabor filters were employed to describe the facial expressions for six different basic emotions. The most consistent combination, formed by the association of HOG filter and support vector machines, was then used to classify the other cultural group: there was a strong drop in accuracy, meaning that the subtle differences of facial expressions of each culture affected the classifier performance. Finally, a classifier was trained with images from both occidental and oriental subjects and its accuracy was higher on multicultural data, evidencing the need of a multicultural training set to build an efficient classifier. (C) 2015 SPIE and IS&TFacial expressions are an important demonstration of humanity's humors and emotions. Algorithms capable of recognizing facial expressions and associating them with emotions were developed and employed to compare the expressions that different cultural gro24219FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2011/22749-8, 2014/04020-9]CNPq [307113/2012-4]2011/22749-8; 2014/04020-9307113/2012-
    corecore