233 research outputs found

    Statistical binary patterns for rotational invariant texture classification

    No full text
    International audienceA new texture representation framework called statistical binary patterns (SBP) is presented. It consists in applying rotation invariant local binary pattern operators (LBP riu2) to a series of moment images, defined by local statistics uniformly computed using a given spatial support. It can be seen as a generalisation of the commonly used complementation approach (CLBP), since it extends the local description not only to local contrast information, but to higher order local variations. In short, SBPs aim at expanding LBP self-similarity operator from the local gray level to the regional distribution level. Thanks to a richer local description, the SBPs have better discrimination power than other LBP variants. Furthermore, thanks to the regularisation effect of the statistical moments, the SBP descriptors show better noise robustness than classical CLBPs. The interest of the approach is validated through a large experimental study performed on five texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD. The results show that, for the four first datasets, the SBPs are comparable or outperform the recent state-of-the-art methods, even using small support for the LBP operator, and using limited size spatial support for the computation of the local statistics

    Human Face Recognition

    Get PDF
    Face recognition, as the main biometric used by human beings, has become more popular for the last twenty years. Automatic recognition of human faces has many commercial and security applications in identity validation and recognition and has become one of the hottest topics in the area of image processing and pattern recognition since 1990. Availability of feasible technologies as well as the increasing request for reliable security systems in today’s world has been a motivation for many researchers to develop new methods for face recognition. In automatic face recognition we desire to either identify or verify one or more persons in still or video images of a scene by means of a stored database of faces. One of the important features of face recognition is its non-intrusive and non-contact property that distinguishes it from other biometrics like iris or finger print recognition that require subjects’ participation. During the last two decades several face recognition algorithms and systems have been proposed and some major advances have been achieved. As a result, the performance of face recognition systems under controlled conditions has now reached a satisfactory level. These systems, however, face some challenges in environments with variations in illumination, pose, expression, etc. The objective of this research is designing a reliable automated face recognition system which is robust under varying conditions of noise level, illumination and occlusion. A new method for illumination invariant feature extraction based on the illumination-reflectance model is proposed which is computationally efficient and does not require any prior information about the face model or illumination. A weighted voting scheme is also proposed to enhance the performance under illumination variations and also cancel occlusions. The proposed method uses mutual information and entropy of the images to generate different weights for a group of ensemble classifiers based on the input image quality. The method yields outstanding results by reducing the effect of both illumination and occlusion variations in the input face images

    Mitigating the effect of covariates in face recognition

    Get PDF
    Current face recognition systems capture faces of cooperative individuals in controlled environment as part of the face recognition process. It is therefore possible to control lighting, pose, background, and quality of images. However, in a real world application, we have to deal with both ideal and imperfect data. Performance of current face recognition systems is affected for such non-ideal and challenging cases. This research focuses on designing algorithms to mitigate the effect of covariates in face recognition.;To address the challenge of facial aging, an age transformation algorithm is proposed that registers two face images and minimizes the aging variations. Unlike the conventional method, the gallery face image is transformed with respect to the probe face image and facial features are extracted from the registered gallery and probe face images. The variations due to disguises cause change in visual perception, alter actual data, make pertinent facial information disappear, mask features to varying degrees, or introduce extraneous artifacts in the face image. To recognize face images with variations due to age progression and disguises, a granular face verification approach is designed which uses dynamic feed-forward neural architecture to extract 2D log polar Gabor phase features at different granularity levels. The granular levels provide non-disjoint spatial information which is combined using the proposed likelihood ratio based Support Vector Machine match score fusion algorithm. The face verification algorithm is validated using five face databases including the Notre Dame face database, FG-Net face database and three disguise face databases.;The information in visible spectrum images is compromised due to improper illumination whereas infrared images provide invariance to illumination and expression. A multispectral face image fusion algorithm is proposed to address the variations in illumination. The Support Vector Machine based image fusion algorithm learns the properties of the multispectral face images at different resolution and granularity levels to determine optimal information and combines them to generate a fused image. Experiments on the Equinox and Notre Dame multispectral face databases show that the proposed algorithm outperforms existing algorithms. We next propose a face mosaicing algorithm to address the challenge due to pose variations. The mosaicing algorithm generates a composite face image during enrollment using the evidence provided by frontal and semiprofile face images of an individual. Face mosaicing obviates the need to store multiple face templates representing multiple poses of a users face image. Experiments conducted on three different databases indicate that face mosaicing offers significant benefits by accounting for the pose variations that are commonly observed in face images.;Finally, the concept of online learning is introduced to address the problem of classifier re-training and update. A learning scheme for Support Vector Machine is designed to train the classifier in online mode. This enables the classifier to update the decision hyperplane in order to account for the newly enrolled subjects. On a heterogeneous near infrared face database, the case study using Principal Component Analysis and C2 feature algorithms shows that the proposed online classifier significantly improves the verification performance both in terms of accuracy and computational time

    Recent Advances in Deep Learning Techniques for Face Recognition

    Full text link
    In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.Comment: 32 pages and citation: M. T. H. Fuad et al., "Recent Advances in Deep Learning Techniques for Face Recognition," in IEEE Access, vol. 9, pp. 99112-99142, 2021, doi: 10.1109/ACCESS.2021.309613

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    A novel face recognition system in unconstrained environments using a convolutional neural network

    Get PDF
    The performance of most face recognition systems (FRS) in unconstrained environments is widely noted to be sub-optimal. One reason for this poor performance may be due to the lack of highly effective image pre-processing approaches, which are typically required before the feature extraction and classification stages. Furthermore, it is noted that only minimal face recognition issues are typically considered in most FRS, thus limiting the wide applicability of most FRS in real-life scenarios. Thus, it is envisaged that developing more effective pre-processing techniques, in addition to selecting the correct features for classification, will significantly improve the performance of FRS. The thesis investigates different research works on FRS, its techniques and challenges in unconstrained environments. The thesis proposes a novel image enhancement technique as a pre-processing approach for FRS. The proposed enhancement technique improves on the overall FRS model resulting into an increased recognition performance. Also, a selection of novel hybrid features has been presented that is extracted from the enhanced facial images within the dataset to improve recognition performance. The thesis proposes a novel evaluation function as a component within the image enhancement technique to improve face recognition in unconstrained environments. Also, a defined scale mechanism was designed within the evaluation function to evaluate the enhanced images such that extreme values depict too dark or too bright images. The proposed algorithm enables the system to automatically select the most appropriate enhanced face image without human intervention. Evaluation of the proposed algorithm was done using standard parameters, where it is demonstrated to outperform existing image enhancement techniques both quantitatively and qualitatively. The thesis confirms the effectiveness of the proposed image enhancement technique towards face recognition in unconstrained environments using the convolutional neural network. Furthermore, the thesis presents a selection of hybrid features from the enhanced image that results in effective image classification. Different face datasets were selected where each face image was enhanced using the proposed and existing image enhancement technique prior to the selection of features and classification task. Experiments on the different face datasets showed increased and better performance using the proposed approach. The thesis shows that putting an effective image enhancement technique as a preprocessing approach can improve the performance of FRS as compared to using unenhanced face images. Also, the right features to be extracted from the enhanced face dataset as been shown to be an important factor for the improvement of FRS. The thesis made use of standard face datasets to confirm the effectiveness of the proposed method. On the LFW face dataset, an improved performance recognition rate was obtained when considering all the facial conditions within the face dataset.Thesis (PhD)--University of Pretoria, 2018.CSIR-DST Inter programme bursaryElectrical, Electronic and Computer EngineeringPhDUnrestricte

    Ihmisryhmät valokuvissa

    Get PDF
    As digital cameras and camera equipped smart phones have become commonplace both the needs and the opportunities to automatically categorize photographs have increased. The subject has been researched with several goals in mind, for example how to find family relations in group photos or how to categorize a groups of people by their subculture. This thesis was made for Tampere University of Technology (TUT) department of signal processing in 2013. In this thesis I review and analyze recent research into face and face properties recognition. Specifically methods of identifying individuals identity, age, gender and expression from known data sets for labeling purposes are considered. Additionally labeling methods of photo categorization based on groups of people in them are examined. Based on this analysis I then constructed an example implementation of these methods as a part of a camera application on Android mobile platform. Finally the suggested methods are evaluated in terms of practical usability

    Balance-guaranteed optimized tree with reject option for live fish recognition

    Get PDF
    This thesis investigates the computer vision application of live fish recognition, which is needed in application scenarios where manual annotation is too expensive, when there are too many underwater videos. This system can assist ecological surveillance research, e.g. computing fish population statistics in the open sea. Some pre-processing procedures are employed to improve the recognition accuracy, and then 69 types of features are extracted. These features are a combination of colour, shape and texture properties in different parts of the fish such as tail/head/top/bottom, as well as the whole fish. Then, we present a novel Balance-Guaranteed Optimized Tree with Reject option (BGOTR) for live fish recognition. It improves the normal hierarchical method by arranging more accurate classifications at a higher level and keeping the hierarchical tree balanced. BGOTR is automatically constructed based on inter-class similarities. We apply a Gaussian Mixture Model (GMM) and Bayes rule as a reject option after the hierarchical classification to evaluate the posterior probability of being a certain species to filter less confident decisions. This novel classification-rejection method cleans up decisions and rejects unknown classes. After constructing the tree architecture, a novel trajectory voting method is used to eliminate accumulated errors during hierarchical classification and, therefore, achieves better performance. The proposed BGOTR-based hierarchical classification method is applied to recognize the 15 major species of 24150 manually labelled fish images and to detect new species in an unrestricted natural environment recorded by underwater cameras in south Taiwan sea. It achieves significant improvements compared to the state-of-the-art techniques. Furthermore, the sequence of feature selection and constructing a multi-class SVM is investigated. We propose that an Individual Feature Selection (IFS) procedure can be directly exploited to the binary One-versus-One SVMs before assembling the full multiclass SVM. The IFS method selects different subsets of features for each Oneversus- One SVM inside the multiclass classifier so that each vote is optimized to discriminate the two specific classes. The proposed IFS method is tested on four different datasets comparing the performance and time cost. Experimental results demonstrate significant improvements compared to the normal Multiclass Feature Selection (MFS) method on all datasets
    corecore