184 research outputs found

    User-assisted intrinsic images

    Get PDF
    For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.National Science Foundation (U.S.) (NSF CAREER award 0447561)Institut national de recherche en informatique et en automatique (France) (Associate Research Team “Flexible Rendering”)Microsoft Research (New Faculty Fellowship)Alfred P. Sloan Foundation (Research Fellowship)Quanta Computer, Inc. (MIT-Quanta T Party

    Multiple cue integration for robust tracking in dynamic environments: application to video relighting

    Get PDF
    L'anàlisi de moviment i seguiment d'objectes ha estat un dels pricipals focus d'atenció en la comunitat de visió per computador durant les dues darreres dècades. L'interès per aquesta àrea de recerca resideix en el seu ample ventall d'aplicabilitat, que s'extén des de tasques de navegació de vehicles autònoms i robots, fins a aplications en la indústria de l'entreteniment i realitat virtual.Tot i que s'han aconseguit resultats espectaculars en problemes específics, el seguiment d'objectes continua essent un problema obert, ja que els mètodes disponibles són propensos a ser sensibles a diversos factors i condicions no estacionàries de l'entorn, com ara moviments impredictibles de l'objecte a seguir, canvis suaus o abruptes de la il·luminació, proximitat d'objectes similars o fons confusos. Enfront aquests factors de confusió la integració de múltiples característiques ha demostrat que permet millorar la robustesa dels algoritmes de seguiment. En els darrers anys, degut a la creixent capacitat de càlcul dels ordinadors, hi ha hagut un significatiu increment en el disseny de complexes sistemes de seguiment que consideren simultàniament múltiples característiques de l'objecte. No obstant, la majoria d'aquests algoritmes estan basats enheurístiques i regles ad-hoc formulades per aplications específiques, fent-ne impossible l'extrapolació a noves condicions de l'entorn.En aquesta tesi proposem un marc probabilístic general per integrar el nombre de característiques de l'objecte que siguin necessàries, permetent que interactuin mútuament per tal d'estimar-ne el seu estat amb precisió, i per tant, estimar amb precisió la posició de l'objecte que s'està seguint. Aquest marc, s'utilitza posteriorment per dissenyar un algoritme de seguiment, que es valida en diverses seqüències de vídeo que contenen canvis abruptes de posició i il·luminació, camuflament de l'objecte i deformacions no rígides. Entre les característiques que s'han utilitzat per representar l'objecte, cal destacar la paramatrització robusta del color en un espai de color dependent de l'objecte, que permet distingir-lo del fons més clarament que altres espais de color típicament ulitzats al llarg de la literatura.En la darrera part de la tesi dissenyem una tècnica per re-il·luminar tant escenes estàtiques com en moviment, de les que s'en desconeix la geometria. La re-il·luminació es realitza amb un mètode 'basat en imatges', on la generació de les images de l'escena sota noves condicions d'il·luminació s'aconsegueix a partir de combinacions lineals d'un conjunt d'imatges de referència pre-capturades, i que han estat generades il·luminant l'escena amb patrons de llum coneguts. Com que la posició i intensitat de les fonts d'il.luminació que formen aquests patrons de llum es pot controlar, és natural preguntar-nos: quina és la manera més òptima d'il·luminar una escena per tal de reduir el nombre d'imatges de referència? Demostrem que la millor manera d'il·luminar l'escena (és a dir, la que minimitza el nombre d'imatges de referència) no és utilitzant una seqüència de fonts d'il·luminació puntuals, com es fa generalment, sinó a través d'una seqüència de patrons de llum d'una base d'il·luminació depenent de l'objecte. És important destacar que quan es re-il·luminen seqüències de vídeo, les imatges successives s'han d'alinear respecte a un sistema de coordenades comú. Com que cada imatge ha estat generada per un patró de llum diferent il·uminant l'escena, es produiran canvis d'il·luminació bruscos entre imatges de referència consecutives. Sota aquestes circumstàncies, el mètode de seguiment proposat en aquesta tesi juga un paper fonamental. Finalment, presentem diversos resultats on re-il·luminem seqüències de vídeo reals d'objectes i cares d'actors en moviment. En cada cas, tot i que s'adquireix un únic vídeo, som capaços de re-il·luminar una i altra vegada, controlant la direcció de la llum, la seva intensitat, i el color.Motion analysis and object tracking has been one of the principal focus of attention over the past two decades within the computer vision community. The interest of this research area lies in its wide range of applicability, extending from autonomous vehicle and robot navigation tasks, to entertainment and virtual reality applications.Even though impressive results have been obtained in specific problems, object tracking is still an open problem, since available methods are prone to be sensitive to several artifacts and non-stationary environment conditions, such as unpredictable target movements, gradual or abrupt changes of illumination, proximity of similar objects or cluttered backgrounds. Multiple cue integration has been proved to enhance the robustness of the tracking algorithms in front of such disturbances. In recent years, due to the increasing power of the computers, there has been a significant interest in building complex tracking systems which simultaneously consider multiple cues. However, most of these algorithms are based on heuristics and ad-hoc rules formulated for specific applications, making impossible to extrapolate them to new environment conditions.In this dissertation we propose a general probabilistic framework to integrate as many object features as necessary, permitting them to mutually interact in order to obtain a precise estimation of its state, and thus, a precise estimate of the target position. This framework is utilized to design a tracking algorithm, which is validated on several video sequences involving abrupt position and illumination changes, target camouflaging and non-rigid deformations. Among the utilized features to represent the target, it is important to point out the use of a robust parameterization of the target color in an object dependent colorspace which allows to distinguish the object from the background more clearly than other colorspaces commonly used in the literature.In the last part of the dissertation, we design an approach for relighting static and moving scenes with unknown geometry. The relighting is performed through an -image-based' methodology, where the rendering under new lighting conditions is achieved by linear combinations of a set of pre-acquired reference images of the scene illuminated by known light patterns. Since the placement and brightness of the light sources composing such light patterns can be controlled, it is natural to ask: what is the optimal way to illuminate the scene to reduce the number of reference images that are needed? We show that the best way to light the scene (i.e., the way that minimizes the number of reference images) is not using a sequence of single, compact light sources as is most commonly done, but rather to use a sequence of lighting patterns as given by an object-dependent lighting basis. It is important to note that when relighting video sequences, consecutive images need to be aligned with respect to a common coordinate frame. However, since each frame is generated by a different light pattern illuminating the scene, abrupt illumination changes between consecutive reference images are produced. Under these circumstances, the tracking framework designed in this dissertation plays a central role. Finally, we present several relighting results on real video sequences of moving objects, moving faces, and scenes containing both. In each case, although a single video clip was captured, we are able to relight again and again, controlling the lighting direction, extent, and color.Postprint (published version

    Capturing and Reconstructing the Appearance of Complex {3D} Scenes

    No full text
    In this thesis, we present our research on new acquisition methods for reflectance properties of real-world objects. Specifically, we first show a method for acquiring spatially varying densities in volumes of translucent, gaseous material with just a single image. This makes the method applicable to constantly changing phenomena like smoke without the use of high-speed camera equipment. Furthermore, we investigated how two well known techniques -- synthetic aperture confocal imaging and algorithmic descattering -- can be combined to help looking through a translucent medium like fog or murky water. We show that the depth at which we can still see an object embedded in the scattering medium is increased. In a related publication, we show how polarization and descattering based on phase-shifting can be combined for efficient 3D~scanning of translucent objects. Normally, subsurface scattering hinders the range estimation by offsetting the peak intensity beneath the surface away from the point of incidence. With our method, the subsurface scattering is reduced to a minimum and therefore reliable 3D~scanning is made possible. Finally, we present a system which recovers surface geometry, reflectance properties of opaque objects, and prevailing lighting conditions at the time of image capture from just a small number of input photographs. While there exist previous approaches to recover reflectance properties, our system is the first to work on images taken under almost arbitrary, changing lighting conditions. This enables us to use images we took from a community photo collection website

    Editing faces in videos

    Get PDF
    Editing faces in movies is of interest in the special effects industry. We aim at producing effects such as the addition of accessories interacting correctly with the face or replacing the face of a stuntman with the face of the main actor. The system introduced in this thesis is based on a 3D generative face model. Using a 3D model makes it possible to edit the face in the semantic space of pose, expression, and identity instead of pixel space, and due to its 3D nature allows a modelling of the light interaction. In our system we first reconstruct the 3D face, which is deforming because of expressions and speech, the lighting, and the camera in all frames of a monocular input video. The face is then edited by substituting expressions or identities with those of another video sequence or by adding virtual objects into the scene. The manipulated 3D scene is rendered back into the original video, correctly simulating the interaction of the light with the deformed face and virtual objects. We describe all steps necessary to build and apply the system. This includes registration of training faces to learn a generative face model, semi-automatic annotation of the input video, fitting of the face model to the input video, editing of the fit, and rendering of the resulting scene. While describing the application we introduce a host of new methods, each of which is of interest on its own. We start with a new method to register 3D face scans to use as training data for the face model. For video preprocessing a new interest point tracking and 2D Active Appearance Model fitting technique is proposed. For robust fitting we introduce background modelling, model-based stereo techniques, and a more accurate light model

    Surface analysis and visualization from multi-light image collections

    Get PDF
    Multi-Light Image Collections (MLICs) are stacks of photos of a scene acquired with a fixed viewpoint and a varying surface illumination that provides large amounts of visual and geometric information. Over the last decades, a wide variety of methods have been devised to extract information from MLICs and have shown its use in different application domains to support daily activities. In this thesis, we present methods that leverage a MLICs for surface analysis and visualization. First, we provide background information: acquisition setup, light calibration and application areas where MLICs have been successfully used for the research of daily analysis work. Following, we discuss the use of MLIC for surface visualization and analysis and available tools used to support the analysis. Here, we discuss methods that strive to support the direct exploration of the captured MLIC, methods that generate relightable models from MLIC, non-photorealistic visualization methods that rely on MLIC, methods that estimate normal map from MLIC and we point out visualization tools used to do MLIC analysis. In chapter 3 we propose novel benchmark datasets (RealRTI, SynthRTI and SynthPS) that can be used to evaluate algorithms that rely on MLIC and discusses available benchmark for validation of photometric algorithms that can be also used to validate other MLIC-based algorithms. In chapter 4, we evaluate the performance of different photometric stereo algorithms using SynthPS for cultural heritage applications. RealRTI and SynthRTI have been used to evaluate the performance of (Neural)RTI method. Then, in chapter 5, we present a neural network-based RTI method, aka NeuralRTI, a framework for pixel-based encoding and relighting of RTI data. In this method using a simple autoencoder architecture, we show that it is possible to obtain a highly compressed representation that better preserves the original information and provides increased quality of virtual images relighted from novel directions, particularly in the case of challenging glossy materials. Finally, in chapter 6, we present a method for the detection of crack on the surface of paintings from multi-light image acquisitions and that can be used as well on single images and conclude our presentation

    The Video Mesh: A Data Structure for Image-based Video Editing

    Get PDF
    This paper introduces the video mesh, a data structure for representing video as 2.5D "paper cutouts." The video mesh allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. The video mesh sparsely encodes optical flow as well as depth, and handles occlusion using local layering and alpha mattes. Motion is described by a sparse set of points tracked over time. Each point also stores a depth value. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. The user rotoscopes occluding contours and we introduce an algorithm to cut the video mesh along them. Object boundaries are refined with perpixel alpha values. The video mesh is at its core a set of texture mapped triangles, we leverage graphics hardware to enable interactive editing and rendering of a variety of effects. We demonstrate the effectiveness of our representation with a number of special effects including 3D viewpoint changes, object insertion, and depth-of-field manipulation

    The Video Mesh: A Data Structure for Image-based Three-dimensional Video Editing

    Get PDF
    This paper introduces the video mesh, a data structure for representing video as 2.5D “paper cutouts.” The video mesh allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. The video mesh sparsely encodes optical flow as well as depth, and handles occlusion using local layering and alpha mattes. Motion is described by a sparse set of points tracked over time. Each point also stores a depth value. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. The user rotoscopes occluding contours and we introduce an algorithm to cut the video mesh along them. Object boundaries are refined with per-pixel alpha values. The video mesh is at its core a set of texture mapped triangles, we leverage graphics hardware to enable interactive editing and rendering of a variety of effects. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depth-of-field manipulation, and 2D to 3D video conversion

    Image editing and interaction tools for visual expression

    Get PDF
    Digital photography is becoming extremely common in our daily life. However, images are difficult to edit and interact with. From a user's perspective, it is important to interact freely with the images on his/her smartphone or ipad. In this thesis we develop several image editing and interaction systems with this idea in mind. We aim for creating visual models with pre-computed internal structures such that interaction is readily supported. We demonstrate that such interactable models, driven by a user's hand, can render powerful visual expressiveness, and make static pixel arrays much more fun to play with. The first system harnesses the editing power of vector graphics. We convert raster images into a vector representation using Loop's subdivision surfaces. An image is represented by a multi-resolution feature-preserving sparse control mesh, with which image editing can be done at semantic level. A user can easily put a smile on a face image, or adjust the level of scene abstractness through a simple slider. The second system allows one to insert an object from image into a new scene. The key is to correct the shading on the object such that it goes consistently with the scene. Unlike traditional approach, we use a simple shape to capture gross shading effects and a set of shading detail images to account for visual complexities. The high-frequency nature of these detail images allows a moderate range of interactive composition effects without causing alarming visual artifacts. The third system is on video clips instead of a single image. We proposed a fully automated algorithm to creat
    corecore