6,977 research outputs found

    Face Identification by Real-Time Connectionist System

    Get PDF
    This document provides an approach to biometrics analysis which consists in the location and identification of faces in real time, making the concept a safe alternative to Web sites based on the paradigm of user and password. Numerous techniques are available to implement face recognition including the principal component analysis (PCA), neural networks, and geometric approach to the problem considering the shapes of the face representing a collection of values. The study and application of these processes originated the development of a security architecture supported by the comparison of images captured from a webcam using methodology of PCA, and the Hausdorff algorithm of distance as similarity measures between a general model of the registered user and the objects (faces) stored in the database, the result is a web authentication system with main emphasis on efficiency and application of neural networks

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    A hybrid model for capturing implicit spatial knowledge

    Get PDF
    This paper proposes a machine learning-based approach for capturing rules embedded in users’ movement paths while navigating in Virtual Environments (VEs). It is argued that this methodology and the set of navigational rules which it provides should be regarded as a starting point for designing adaptive VEs able to provide navigation support. This is a major contribution of this work, given that the up-to-date adaptivity for navigable VEs has been primarily delivered through the manipulation of navigational cues with little reference to the user model of navigation

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    Modeling user navigation

    Get PDF
    This paper proposes the use of neural networks as a tool for studying navigation within virtual worlds. Results indicate that the network learned to predict the next step for a given trajectory. The analysis of hidden layer shows that the network was able to differentiate between two groups of users identified on the basis of their performance for a spatial task. Time series analysis of hidden node activation values and input vectors suggested that certain hidden units become specialised for place and heading, respectively. The benefits of this approach and the possibility of extending the methodology to the study of navigation in Human Computer Interaction applications are discussed

    Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling

    Get PDF
    It is often assumed that similar domain-specific behavioural impairments found in cases of adult brain damage and developmental disorders correspond to similar underlying causes, and can serve as convergent evidence for the modular structure of the normal adult cognitive system. We argue that this correspondence is contingent on an unsupported assumption that atypical development can produce selective deficits while the rest of the system develops normally (Residual Normality), and that this assumption tends to bias data collection in the field. Based on a review of connectionist models of acquired and developmental disorders in the domains of reading and past tense, as well as on new simulations, we explore the computational viability of Residual Normality and the potential role of development in producing behavioural deficits. Simulations demonstrate that damage to a developmental model can produce very different effects depending on whether it occurs prior to or following the training process. Because developmental disorders typically involve damage prior to learning, we conclude that the developmental process is a key component of the explanation of endstate impairments in such disorders. Further simulations demonstrate that in simple connectionist learning systems, the assumption of Residual Normality is undermined by processes of compensation or alteration elsewhere in the system. We outline the precise computational conditions required for Residual Normality to hold in development, and suggest that in many cases it is an unlikely hypothesis. We conclude that in developmental disorders, inferences from behavioural deficits to underlying structure crucially depend on developmental conditions, and that the process of ontogenetic development cannot be ignored in constructing models of developmental disorders

    Models of atypical development must also be models of normal development

    Get PDF
    Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children ill the study of the etiology of developmental disorders

    A false colouring real time visual saliency algorithm for reference resolution in simulated 3-D environments

    Get PDF
    In this paper we present a novel false colouring visual saliency algorithm and illustrate how it is used in the Situated Language Interpreter system to resolve natural language references
    corecore