481 research outputs found

    Attention-Aware Face Hallucination via Deep Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem with the goal to generate high-resolution (HR) faces from low-resolution (LR) input images. In contrast to existing methods that often learn a single patch-to-patch mapping from LR to HR images and are regardless of the contextual interdependency between patches, we propose a novel Attention-aware Face Hallucination (Attention-FH) framework which resorts to deep reinforcement learning for sequentially discovering attended patches and then performing the facial part enhancement by fully exploiting the global interdependency of the image. Specifically, in each time step, the recurrent policy network is proposed to dynamically specify a new attended region by incorporating what happened in the past. The state (i.e., face hallucination result for the whole image) can thus be exploited and updated by the local enhancement network on the selected region. The Attention-FH approach jointly learns the recurrent policy network and local enhancement network through maximizing the long-term reward that reflects the hallucination performance over the whole image. Therefore, our proposed Attention-FH is capable of adaptively personalizing an optimal searching path for each face image according to its own characteristic. Extensive experiments show our approach significantly surpasses the state-of-the-arts on in-the-wild faces with large pose and illumination variations

    FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

    Full text link
    Face Super-Resolution (SR) is a domain-specific super-resolution problem. The specific facial prior knowledge could be leveraged for better super-resolving face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes full use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To further generate realistic faces, we propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Moreover, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive benchmark experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. Code will be made available upon publication.Comment: Chen and Tai contributed equally to this pape
    • …
    corecore