433 research outputs found

    Facial Expression Recognition

    Get PDF

    Gender Classification from Facial Images

    Get PDF
    Gender classification based on facial images has received increased attention in the computer vision community. In this work, a comprehensive evaluation of state-of-the-art gender classification methods is carried out on publicly available databases and extended to reallife face images, where face detection and face normalization are essential for the success of the system. Next, the possibility of predicting gender from face images acquired in the near-infrared spectrum (NIR) is explored. In this regard, the following two questions are addressed: (a) Can gender be predicted from NIR face images; and (b) Can a gender predictor learned using visible (VIS) images operate successfully on NIR images and vice-versa? The experimental results suggest that NIR face images do have some discriminatory information pertaining to gender, although the degree of discrimination is noticeably lower than that of VIS images. Further, the use of an illumination normalization routine may be essential for facilitating cross-spectral gender prediction. By formulating the problem of gender classification in the framework of both visible and near-infrared images, the guidelines for performing gender classification in a real-world scenario is provided, along with the strengths and weaknesses of each methodology. Finally, the general problem of attribute classification is addressed, where features such as expression, age and ethnicity are derived from a face image

    Face Alignment Using Boosting and Evolutionary Search

    Get PDF
    In this paper, we present a face alignment approach using granular features, boosting, and an evolutionary search algorithm. Active Appearance Models (AAM) integrate a shape-texture-combined morphable face model into an efficient fitting strategy, then Boosting Appearance Models (BAM) consider the face alignment problem as a process of maximizing the response from a boosting classifier. Enlightened by AAM and BAM, we present a framework which implements improved boosting classifiers based on more discriminative features and exhaustive search strategies. In this paper, we utilize granular features to replace the conventional rectangular Haar-like features, to improve discriminability, computational efficiency, and a larger search space. At the same time, we adopt the evolutionary search process to solve the deficiency of searching in the large feature space. Finally, we test our approach on a series of challenging data sets, to show the accuracy and efficiency on versatile face images

    An Efficient Boosted Classifier Tree-Based Feature Point Tracking System for Facial Expression Analysis

    Get PDF
    The study of facial movement and expression has been a prominent area of research since the early work of Charles Darwin. The Facial Action Coding System (FACS), developed by Paul Ekman, introduced the first universal method of coding and measuring facial movement. Human-Computer Interaction seeks to make human interaction with computer systems more effective, easier, safer, and more seamless. Facial expression recognition can be broken down into three distinctive subsections: Facial Feature Localization, Facial Action Recognition, and Facial Expression Classification. The first and most important stage in any facial expression analysis system is the localization of key facial features. Localization must be accurate and efficient to ensure reliable tracking and leave time for computation and comparisons to learned facial models while maintaining real-time performance. Two possible methods for localizing facial features are discussed in this dissertation. The Active Appearance Model is a statistical model describing an object\u27s parameters through the use of both shape and texture models, resulting in appearance. Statistical model-based training for object recognition takes multiple instances of the object class of interest, or positive samples, and multiple negative samples, i.e., images that do not contain objects of interest. Viola and Jones present a highly robust real-time face detection system, and a statistically boosted attentional detection cascade composed of many weak feature detectors. A basic algorithm for the elimination of unnecessary sub-frames while using Viola-Jones face detection is presented to further reduce image search time. A real-time emotion detection system is presented which is capable of identifying seven affective states (agreeing, concentrating, disagreeing, interested, thinking, unsure, and angry) from a near-infrared video stream. The Active Appearance Model is used to place 23 landmark points around key areas of the eyes, brows, and mouth. A prioritized binary decision tree then detects, based on the actions of these key points, if one of the seven emotional states occurs as frames pass. The completed system runs accurately and achieves a real-time frame rate of approximately 36 frames per second. A novel facial feature localization technique utilizing a nested cascade classifier tree is proposed. A coarse-to-fine search is performed in which the regions of interest are defined by the response of Haar-like features comprising the cascade classifiers. The individual responses of the Haar-like features are also used to activate finer-level searches. A specially cropped training set derived from the Cohn-Kanade AU-Coded database is also developed and tested. Extensions of this research include further testing to verify the novel facial feature localization technique presented for a full 26-point face model, and implementation of a real-time intensity sensitive automated Facial Action Coding System
    • …
    corecore