97,806 research outputs found

    Hardware implementation of deception detection system classifier

    Get PDF
    Non-verbal features extracted from human face and body are considered as one of the most important indication for revealing the deception state. The Deception Detection System (DDS) is widely applied in different areas like: security, criminal investigation, terrorism detection …etc. In this study, fifteen features are extracted from each participant in the collected database. These features are related to three kinds of non-verbal features these are: facial expressions, head movements and eye gaze. The collected databased contain videos for 102 subjects and there are 888 clip related to both lie and truth response, these clips are used to train and test the system classifier. These fifteen features are placed in a single vector and applied to Support Vector Machine (SVM) classifier to classify input feature vectors into one of two classes either liar or truth-teller class. The detection accuracy of the proposed DDS based on SVM classifier was equal to 89.6396%. Finally, the hardware implementation for SVM classifier is done using the Xilinx block set. The design requires 136 slices and 263 of 4 input LUTs. Moreover, the designed classifier doesn’t require any use of both flip-flops and MULT18X18SIOs. The selected hardware platform (FPGA kit) for implementing the SVM classifier is Spartan-3A 700A

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Towards a quantitative measure of rareness

    Get PDF
    Within the context of detection of incongruent events, an often overlooked aspect is how a system should react to the detection. The set of all the possible actions is certainly conditioned by the task at hand, and by the embodiment of the artificial cognitive system under consideration. Still, we argue that a desirable action that does not depend from these factors is to update the internal model and learn the new detected event. This paper proposes a recent transfer learning algorithm as the way to address this issue. A notable feature of the proposed model is its capability to learn from small samples, even a single one. This is very desirable in this context, as we cannot expect to have too many samples to learn from, given the very nature of incongruent events. We also show that one of the internal parameters of the algorithm makes it possible to quantitatively measure incongruence of detected events. Experiments on two different datasets support our claim

    Toward Open-Set Face Recognition

    Full text link
    Much research has been conducted on both face identification and face verification, with greater focus on the latter. Research on face identification has mostly focused on using closed-set protocols, which assume that all probe images used in evaluation contain identities of subjects that are enrolled in the gallery. Real systems, however, where only a fraction of probe sample identities are enrolled in the gallery, cannot make this closed-set assumption. Instead, they must assume an open set of probe samples and be able to reject/ignore those that correspond to unknown identities. In this paper, we address the widespread misconception that thresholding verification-like scores is a good way to solve the open-set face identification problem, by formulating an open-set face identification protocol and evaluating different strategies for assessing similarity. Our open-set identification protocol is based on the canonical labeled faces in the wild (LFW) dataset. Additionally to the known identities, we introduce the concepts of known unknowns (known, but uninteresting persons) and unknown unknowns (people never seen before) to the biometric community. We compare three algorithms for assessing similarity in a deep feature space under an open-set protocol: thresholded verification-like scores, linear discriminant analysis (LDA) scores, and an extreme value machine (EVM) probabilities. Our findings suggest that thresholding EVM probabilities, which are open-set by design, outperforms thresholding verification-like scores.Comment: Accepted for Publication in CVPR 2017 Biometrics Worksho
    • …
    corecore