119 research outputs found

    Micro-mechanical sensor for the spectral decomposition of acoustic signals

    Get PDF
    An array of electret-biased frequency-selective resonant microelectromechanical system (MEMS) acoustic sensors was proposed to perform analysis of stress pulses created during an impact between two materials. This analysis allowed classification of the stiffness of the materials involved in the impact without applying post-impact signal processing. Arrays of resonant MEMS sensors provided filtering of the incident stress pulse and subsequent binning of time-domain waveforms into frequency-based spectra. Results indicated that different impact conditions and materials yielded different spectral characteristics. These characteristics, as well as the resulting sensor array responses, are discussed and applied to impact classification. Each individual sensor element in the array was biased by an in situ charged electret film. A microplasma discharge apparatus embedded within the microsensor allowed charging of the electret film after all device fabrication was complete. This enabled electret film integration using high-temperature surface micromachining processes that would typically lead to discharge of traditionally formed electret materials. This also eliminated the traditional wafer-bonding and post-fabrication assembly processes required in conventional electret integration approaches. The microplasma discharge process and resulting electret performance are discussed within the context of the MEMS acoustic sensor array.Ph.D.Committee Chair: Allen, Mark; Committee Member: Brand, Oliver; Committee Member: Michaels, Jennifer; Committee Member: Michaels, Thomas; Committee Member: Ready, Jud W

    Conception, fabrication et caractérisation d'un microphone MEMS

    Get PDF
    Electret microphones dedicated to consumer electronics and medical applications (hearing aids) have reached the miniaturization limits. Since the release of the first microphone based on Silicon micromachining, electret microphones are constantly replaced by MEMS microphones. MEMS (Micro-Electro-Mechanical Systems) microphones use Silicon that provides exceptional mechanical characteristics along with good electric properties and mature fabrication technology. Regardless of the transduction principle (capacitive, piezoresistive, piezoelectric, optical), all of the MEMS microphones reported in the state of the art literature are based on a membrane deflecting out of the plane of the base wafer. Most of the reported microphones and all of the commercially available MEMS use capacitive transduction. Downscaling of capacitive microphones is problematic, since the sensitivity depends on capacitance value. Moreover capacitive sensors suffer of high sensitivity to parasitic capacitance and nonlinearity. The drawbacks of capacitive detection may be overcome with use of piezoresistive properties of Silicon nanowires. Unlike the classical piezoresistors integrated into silicon membrane, suspended nanowires do not suffer of leakage current. Further improvement of piezoresistive detection is possible since the longitudinal piezoresistive coefficient rises inversely proportional to nanowire section. This thesis presents the considerations of novel MEMS microphone architecture that uses microbeams which deflect in the plane of the base wafer. Signal transduction is achieved by piezoresistive nanogauges integrated in the microsystem and attached to the microbeams. Acoustic pressure fluctuations lead to the deflection of the microbeams which produces a stress concentration in the nanogauges. Accurate simulations of the discussed transducer couple acoustic, mechanical and electric behavior of the system. Due to micrometric dimensions of the MEMS acoustic system, thermal and viscous dissipative effects have to be taken into account. To reliably predict the sensor behavior two acoustic models are prepared: the complete Finite Element Model based on the full set of linearized Navier-Stokes equations and the approximative model based on the Lumped Elements (Equivalent Cirtuit Representation). Both models are complementary in the design process to finally retrieve the frequency response and the noise budget of the sensor. The work is completed by the description of the technological process and the challenges related to the prototype microfabrication. Then the approach to the MEMS microphone characterization in pressure-field and free-field is presented.Les microphones à électret dédiés à l'électronique grand public et les applications médicales (les audioprothèses) ont atteint les limites de la miniaturisation. Depuis la sortie du premier microphone basé sur une technologie microsystème sur silicium (MEMS: Micro-Electro-Mechanical Systems), les microphones à électret sont progressivement remplacés par les microphones MEMS. Les MEMS utilisent le silicium car il offre des caractéristiques mécaniques exceptionnelles avec de bonnes propriétés électriques et la technologie de fabrication est maintenant bien maîtrisée. La plupart des microphones MEMS qui sont décrits dans la littérature sont constitués d’une membrane qui vibre en dehors du plan du capteur, et utilisent la transduction capacitive. La miniaturisation de tels microphones est limitée car leur sensibilité est liée à la valeur de la capacité qui dépend de la taille de la membrane. En outre, les capteurs capacitifs sont très sensibles aux capacités parasites et aux non-linéarités. Cette thèse présente une nouvelle architecture de microphone MEMS qui utilise des micro-poutres qui vibrent dans le plan capteur. La transduction du signal est réalisée par des nanojauges piézorésistives intégrées dans le microsystème et attachées aux micro-poutres. Ce système de détection original ne présente pas les inconvénients de la détection capacitive et à la différence des piézorésistors classiques intégrés dans la membrane de silicium, les nanofils suspendus permettent d’éliminer les courants de fuite. De plus, l'amélioration de la détection est possible puisque le coefficient piézo-résistif longitudinal est inversement proportionnel à la section du nanofil. Les fluctuations de pression acoustique entraînent les déviations des micro-poutres qui produisent une concentration de contraintes dans les nanogauges. Le comportement du capteur, que l’on cherche à modéliser, est lié à des phénomènes mécaniques, acoustiques et électriques qui sont couplés. En raison des dimensions micrométriques du MEMS, les effets des dissipations thermique et visqueuse doivent être pris en compte dans le comportement acoustique. Pour prédire de façon fiable le comportement du capteur, deux modèles vibroacoustiques sont utilisés: un modèle éléments finis basé sur l'ensemble des équations de Navier-Stokes linéarisées et un modèle approché basé sur un schéma à constantes localisées (représentation par circuit électrique équivalent). Les deux modèles sont complémentaires dans le processus de conception pour déterminer la réponse en fréquence et le taux de bruit du capteur. Le travail est complété par la description des processus technologiques et les défis liés à la fabrication du prototype. Puis deux approches pour la caractérisation fonctionnelle du microphone MEMS sont présentées, la première en tube d’impédance, la seconde en champ libre

    Micromachined capacitive pressure sensor with signal conditioning electronics

    Get PDF

    Embedded charge for microswitch applications

    Get PDF
    In this work a micro-electro-mechanical system (MEMS) is proposed for radio frequency (RF) switching applications. MEMS devices outperform the traditionally used solid-state devices in areas such as isolation, insertion loss, and linearity. However, micro switches suffer from high actuation voltage, lifetime limitations, and high packaging cost. A novel micro switch design that incorporates embedded charge in a cantilever structure can, in principle, enable low-voltage operation. This was the primary motivation for this stud

    DESIGN AND MICROFABRICATION OF A CMOS-MEMS PIEZORESISTIVE ACCELEROMETER AND A NANO-NEWTON FORCE SENSOR

    Get PDF
    DESIGN AND MICROFABRICATION OF A CMOS-MEMS PIEZORESISTIVE ACCELEROMETER AND A NANO-NEWTON FORCE SENSOR by Mohd Haris Md Khir Adviser: Hongwei Qu, Ph.D. This thesis work consists of three aspects of research efforts: I. Design, fabrication, and characterization of a CMOS-MEMS piezoresistive accelerometer 2. Design, fabrication, and characterization of a CMOS-MEMS nano-Newton force sensor 3. Observer-based controller design of a nano-Newton force sensor actuator system A low-cost, high-sensitivity CMOS-MEMS piezoresistive accelerometer with large proof mass has been fabricated. Inherent CMOS polysilicon thin film was utilized as piezoresistive material and full Wheatstone bridge was constructed through easy wiring allowed by three metal layers in CMOS thin films. The device fabrication process consists of a standard CMOS process for sensor configuration and a deep reactive ion etching (DRIE) based post-CMOS microfabrication for MEMS structure release. Bulk single-crystal silicon (SCS) substrate was included in the proof mass to increase sensor sensitivity. Using a low operating power of 1.67 m W, the sensitivity was measured as 30.7 mV/g after amplification and 0.077 mV/g prior to amplification. With a total noise floor of 1.03 mg!-!Hz, the minimum detectable acceleration is found to be 32.0 mg for a bandwidth of I kHz which is sufficient for many applications. The second device investigated in this thesis work is a CMOS-MEMS capacitive force sensor capable ofnano-Newton out-of-plane force measurement. Sidewall and fringe capacitance formed by the multiple CMOS metal layers were utilized and fully differential sensing was enabled by common-centroid wiring of the sensing capacitors. Single-crystal silicon (SCS) is incorporated in the entire sensing element for robust structures and reliable sensor deployment in force measurement. A sensitivity of 8 m V /g prior to amplification was observed. With a total noise floor of 0.63 mg!-IHz, the minimum detection acceleration is found to be 19.8 mg, which is equivalent to a sensing force of 449 nN. This work also addresses the design and simulation of an observer-based nonlinear controller employed in a CMOS-MEMS nano-Newton force sensor actuator system. Measurement errors occur when there are in-plane movements of the probe tip; these errors can be controlled by the actuators incorporated within the sensor. Observerbased controller is necessitated in real-world control applications where not all the state variables are accessible for on-line measurements. V
    • …
    corecore