23 research outputs found

    High frequency CMUT for continuous monitoring of red blood cells aggregation

    Get PDF
    Récemment, de nombreuses recherches ont démontré que le transducteur ultrasonore micro-usiné capacitif CMUT peut être une alternative aux transducteurs piézoélectriques dans différents domaines, y compris l’imagerie par ultrasons médicaux. Des travaux antérieurs ont démontré les avantages de CMUT en termes de production à haute fréquence, de sensibilité, de compatibilité avec la technologie complémentaire métal – oxyde – semi-conducteur et de coût de fabrication peu élevé. Ce travail montrera les travaux préliminaires en vue de la fabrication d'un transducteur à ultrasons utilisant des CMUT pour mesurer en continu l'agrégation des globules rouges. Les cellules CMUT ont été conçues et simulées pour obtenir des fréquences de résonance et des dimensions spécifiques répondant à cet objectif, à l'aide de la modélisation par éléments finis avec COMSOL Multiphysics. Des simulations par ultrasons (logiciel Field II) ont été utilisées pour caractériser les faisceaux ultrasonores émis et reçus afin de concevoir la distribution géométrique des cellules. La fabrication a été réalisée en utilisant une photolithographie multicouche et des dépôts. Huit masques ont été conçus pour chaque couche de dépôt. Les masques ont été conçus pour comporter quatre groupes de CMUT, le premier émettant et recevant à 40 MHz, le second émettant à 30 MHz et recevant à 40 MHz, le troisième émettant à 20 MHz et recevant à 30 MHz, et le dernier émettant à 10 MHz. MHz et réception à 30 MHz. La fréquence change avec le rayon de chaque cellule CMUT, mais les dimensions de l'épaisseur sont les mêmes pour toutes les cellules, les épaisseurs des membranes et des couches isolantes sont de 0,3 µm et l'intervalle de vide est de 0,1 µm. Les matrices CMUT ont été fabriquées à l'aide de la technologie de couche de libération sacrificielle du laboratoire Polytechnique LMF.Research has demonstrated that Capacitive Micro machined Ultrasonic Transducer (CMUT) can be an alternative to piezoelectric transducers in different domains including medical ultrasound imaging. Previous work showed advantages of CMUT in terms of high frequency production, sensitivity, its compatibility with complementary metal–oxide–semiconductor technology and its low cost of fabrication. This work will show preliminary work toward fabricating an ultrasound transducer using CMUTs to continuously measure Red Blood Cells aggregation. CMUTs cells were designed and simulated to obtain specific resonant frequencies and dimension that fulfill that purpose using finite element modeling with COMSOL Multiphysics. Ultrasound simulations (Field II software) were used to characterize the emitted and received US beams to design the cells geometrical distribution. Fabrication was done using multilayered photolithography and depositions. Eight masks were designed for each deposition layer. The masks were designed to have four groups of CMUTs, one emitting and receiving at 40MHz, a second emitting at 30 MHz and receiving at 40 MHz, a third one emitting at 20 MHz and receiving at 30 MHz, and a last one emitting at 10 MHz and receiving at 30 MHz. The frequency changes with the radius of each CMUT cell but the thickness dimensions are the same for all the cells, the membranes and insulation layers thicknesses are 0.3 µm and the vacuum gap is 0.1 µm. The CMUT arrays were fabricated using sacrificial release layer technology in Polytechnic LMF Lab

    Effects of biocompatible encapsulations on the acoustic characteristics of CMUTs

    Get PDF
    Advances in modern medicine enable the use of medical implants for the treatment of an increasing number of diseases. If different implanted systems need to communicate with each other, data transmission using ultrasound is a promising solution. In this dissertation, an encapsulation strategy, which allows the use of capacitive micromachined ultrasonic transducers (CMUTs) within conventional implant housings, was developed and evaluated for the first time. The novel encapsulation approach consists of a silicone layer for coupling the CMUT to a layer of polyether ether ketone (PEEK) or titanium. Both materials are widely used for medical implant housings. Finite element simulations, complemented by measurements in air and in immersion as well as ex vivo experiments, have shown that effective data transmission with data rates of minimum 0.8 Mbps is possible over at least 6 cm with this encapsulation strategy.Die Fortschritte in der modernen Medizin ermöglichen immer häufiger den Einsatz von medizinischen Implantaten zur Therapie. In Anwendungsfällen, die eine Kommunikation mehrerer implantierter Systeme untereinander erfordern, stellt die Datenübertragung mit Hilfe akustischer Wellen eine vielversprechende Lösung dar. Hierfür ist eine biokompatible Kapselung nötig, die eine effiziente Datenübertragung nicht verhindert. In dieser Arbeit wird erstmals eine Kapselungsstrategie entwickelt und evaluiert, die den Einsatz von kapazitiven mikromechanischen Ultraschallwandlern (CMUTs) innerhalb konventioneller Implantatgehäuse ermöglicht. Die untersuchte neuartige Kapselung besteht aus einer Silikonschicht zur Ankopplung an eine Schicht aus Polyetheretherketon (PEEK) oder Titan, zwei weitverbreitete Materialien für die Kapselung medizinischer Implantate. Finite Elemente Simulationen, Messungen in Luft und Flüssigkeit sowie ex vivo Experimente haben gezeigt, dass mit dieser Kapselungsstrategie eine effektive Datenübertragung über mindestens 6 cm möglich ist. Die in ex vivo Experimenten ermittelten Frequenzbandbreiten der gekapselten CMUTs ermöglichen Datenraten von mindestens 0.8 Mbps. Ein zusätzlicher experimenteller Vergleich mit herkömmlichen Kapselungen für CMUTs bestätigt das große Potenzial der neuartigen Kapselung aus Silikon und PEEK. Abschließend wurden zukünftige Ansatzpunkte zur Steigerung von Signalamplitude und Datenrate identifiziert und diskutiert

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF

    High-resolution 3D printing enabled, minimally invasive fibre optic sensing and imaging probes

    Get PDF
    Minimally invasive surgical procedures have become more favourable to their traditional surgical counterparts due to their reduced risks, faster recovery times and decreased trauma. Despite this, there are still some limitations involved with these procedures, such as the spatial confinement of operating through small incisions and the intrinsic lack of visual or tactile feedback. Specialised tools and imaging equipment are required to overcome these issues. Providing better feedback to surgeons is a key area of research to enhance the outcomes and safety profiles of minimally invasive procedures. This thesis is centred on the development of new microfabrication methods to create novel fibre optic imaging and sensing probes that could ultimately be used for improving the guidance of minimally invasive surgeries. Several themes emerged in this process. The first theme involved the use and optimisation of high-resolution 3D injection of polymers as sacrificial layers onto which parylene-C was deposited. One outcome from this theme was a series of miniaturised parylene-C based membranes to create fibre optic pressure sensors for physiological pressure measurements and for ultrasound reception. The pressure sensor sensitivity was found to vary from 0.02 to 0.14 radians/mmHg, as the thickness of parylene was decreased from 2 to 0.5 μm. The ultrasound receivers were characterised and exhibited a noise equivalent pressure (NEP) value of ~100 Pa (an order of magnitude improvement compared to similarly sized piezoelectric hydrophones). A second theme employed high-resolution 3D printing to create microstructures of polydimethylsiloxane (PDMS) and subsequently formed nanocomposites, to create microscale acoustic hologram structures. This theme included the development of innovative manufacturing processes such as printing directly onto optical fibres, micro moulding and precise deposition which enabled the creation of such devices. These microstructures were investigated for reducing the divergence of photoacoustically-generated ultrasound beams. Taken together, the developments in this thesis pave the way for 3D microfabricated polymer-based fibre optic sensors that could find broad clinical utility in minimally invasive procedures

    Towards rapid 3D direct manufacture of biomechanical microstructures

    Get PDF
    The field of stereolithography has developed rapidly over the last 20 years, and commercially available systems currently have sufficient resolution for use in microengineering applications. However, they have not as yet been fully exploited in this field. This thesis investigates the possible microengineering applications of microstereolithography systems, specifically in the areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, stereolithography and microneedles are reviewed, and a variety of test builds were fabricated using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its capabilities. A number of microneedle geometries were considered. This number was narrowed down using finite element modelling, before another simulation was used to optimise these structures. 9 × 9 arrays of 400 μm tall, 300 μm base diameter microneedles were subjected to mechanical testing. Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, stepped cone and inverted trumpet. The 90 μm needle tips were subjected to between 30 and 32 MPa of pressure at their failure point - more than 10 times the required pressure to puncture average human skin. A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 μm-thick membranes used as the basis for a reciprocating displacement operating principle. The membranes were tested using an oscillating pneumatic actuation, and were found reliable (>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices produced flow rates of up to 1,000 μl/min with backpressures of up to 375 Pa. Another device rectified using active membrane valves was found to self-prime, and produced backpressures of up to 4.9 kPa. These devices and structures show great promise for inclusion in complex, fully integrated and active microfluidic systems fabricated using microstereolithography alone, with implications for both cost of manufacture and lead time

    Towards rapid 3D direct manufacture of biomechanical microstructures

    Get PDF
    The field of stereolithography has developed rapidly over the last 20 years, and commercially available systems currently have sufficient resolution for use in microengineering applications. However, they have not as yet been fully exploited in this field. This thesis investigates the possible microengineering applications of microstereolithography systems, specifically in the areas of active microfluidic devices and microneedles. The fields of micropumps and microvalves, stereolithography and microneedles are reviewed, and a variety of test builds were fabricated using the EnvisionTEC Perfactory Mini Multi-Lens stereolithography system in order to define its capabilities. A number of microneedle geometries were considered. This number was narrowed down using finite element modelling, before another simulation was used to optimise these structures. 9 × 9 arrays of 400 μm tall, 300 μm base diameter microneedles were subjected to mechanical testing. Per needle failure forces of 0.263 and 0.243 N were recorded for the selected geometries, stepped cone and inverted trumpet. The 90 μm needle tips were subjected to between 30 and 32 MPa of pressure at their failure point - more than 10 times the required pressure to puncture average human skin. A range of monolithic micropumps were produced with integrated 4 mm diameter single-layer 70 μm-thick membranes used as the basis for a reciprocating displacement operating principle. The membranes were tested using an oscillating pneumatic actuation, and were found reliable (>1,000,000 cycles) up to 2.0 PSIG. Pneumatic single-membrane nozzle/diffuser rectified devices produced flow rates of up to 1,000 μl/min with backpressures of up to 375 Pa. Another device rectified using active membrane valves was found to self-prime, and produced backpressures of up to 4.9 kPa. These devices and structures show great promise for inclusion in complex, fully integrated and active microfluidic systems fabricated using microstereolithography alone, with implications for both cost of manufacture and lead time.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)GBUnited Kingdo

    Modular integration and on-chip sensing approaches for tunable fluid control polymer microdevices

    Get PDF
    228 p.Doktore tesi honetan mikroemariak kontrolatzeko elementuak diseinatu eta garatuko dira, mikrobalbula eta mikrosentsore bat zehazki. Ondoren, gailu horiek batera integratuko dira likido emari kontrolatzaile bat sortzeko asmotan. Helburu nagusia gailuen fabrikazio arkitektura modular bat frogatzea da, non Lab-on-a-Chip prototipoak garatzeko beharrezko fase guztiak harmonizatuz, Cyclic-Olefin-Polymer termoplastikozko mikrogailu merkeak pausu gutxi batzuetan garatuko diren, hauen kalitate industriala bermatuz. Ildo horretan, mikrogailuak prototipotik produkturako trantsizio azkar, erraz, errentagarri eta arriskurik gabeen bidez lortu daitezkeenetz frogatuko da

    3D Structuration Techniques of LTCC for Microsystems Applications

    Get PDF
    This thesis aimed at developing new 3D structuration techniques for a relatively recent new ceramic technology called LTCC, which stands for Low Temperature, Co-fired Ceramic. It is a material originally developed for the microelectronic packaging industry; its chemical and thermal stabilities make it suitable to military-grade and automotive applications, such as car ignition systems and Wi-Fi antennae (GHz frequencies). In recent years however, the research in ceramic microsystems has seen a growing interest for microfluidics, packaging, MEMS and sensors. Positioned at the crossing of classical thick-film technology on alumina substrate and of high temperature ceramics, this new kind of easily structurable ceramic is filling the technological and dimensional gap between microsystems in Silicon and classical "macro microsystems", in the sense that we can now structure microdevices in the range from 150 mm to 150 mm. In effect, LTCC technology allows printing conductors and other inks from 30 mm to many mm, structuration from 150 mm to 150 mm, and suspended structures with gaps down to 30 mm thanks to sacrificial materials. Sensors and their packaging are now merged in what we can call "functional packaging". The contributions of this thesis lie both in the technological aspects we brought, and in the innovative microfluidic sensors and devices created using our developed methods. These realizations would not have been possible with the standard lamination and firing techniques used so far. Hence, we allow circumventing the problems related to microfluidics circuitry: for instance, the difficulty to control final fired dimensions, the burden to produce cavities or open structures and the associated delaminations of tapes, and the absence of "recipe" for the industrialization of fluidic devices. The achievements of the presented research can be summarized as follows: The control of final dimensions is mastered after having studied the influence of lamination parameters, proving they have a considerable impact. It is now possible to have a set of design rules for a given material, deviating from suppliers' recommendations for the manufacture of slender structures requiring reduced lamination. A new lamination method was set up, permitting the assembly of complex microfluidic circuits that would normally not sustain standard lamination. The method is based on partial pseudo-isostatic sub-laminations, with the help of a constrained rubber, subsequently consolidated together with a final standard uniaxial lamination. The conflict between well bonded tapes and acceptable output geometry is greatly attenuated. We achieved the formulation of a new class of Sacrificial Volume Materials (SVM) to allow the fabrication of open structures on LTCC and on standard alumina substrates; these are indeed screen-printable inks made by mixing together mineral compounds, a glassy phase and experimental organic binders. This is an appreciable improvement over the so-far existing SVMs for LTCC, limited to closed structures such as thin membranes. An innovative industrial-grade potentially low-cost diagnostics multisensor for the pneumatic industry was developed, allowing the measurement of compressed air pressure, flow and temperature. The device is entirely mounted by soldering onto an electro-fluidic platform, de facto making it a true electro-fluidic SMD component in itself. It comprises additionally its own integrated SMD electronics, and thanks to standard hybrid assembly techniques, gets rid of external wires and tubings – this prowess was never achieved before. This opens the way for in situ diagnostics of industrial systems through the use of low-cost integrated sensors that directly output conditioned signals. In addition to the abovementioned developments, we propose an extensive review of existing Sacrificial Volume Materials, and we present numerous applications of LTCC to sensors and microsystems, such as capacitive microforce sensors, a chemical microreactor and microthrusters. In conclusion, LTCC is a technology adapted to the industrial production of microfluidic sensors and devices: the fabrication steps are all industrializable, with an easy transition from prototyping to mass production. Nonetheless, the structuration of channels, cavities and membranes obey complex rules; it is for the moment not yet possible to choose with accuracy the right manufacturing parameters without testing. Consequently, thorough engineering and mastering of the know-how of the whole manufacturing process is still necessary to produce efficient LTCC electro-fluidic circuits, in contrast with older techniques such as classical thick-film technology on alumina substrates or PCBs in FR-4. Notwithstanding its lack of maturity, the still young LTCC technology is promising in both the microelectronics and microfluidics domains. Engineers have a better understanding of the structuration possibilities, of the implications of lamination, and of the most common problems; they have now all the tools in hand to create complex microfluidics circuits
    corecore