97 research outputs found

    Design and Fabrication of sub-THz Steerable Photonic Transmitter 1×4 Array for Short-Distance Wireless Links

    Get PDF
    In this paper we present the latest results on the design, fabrication and test of stand-alone photonic devices devoted to ultra-high bandwidth wireless access networks operating near the Terahertz (THz) band. We review the sub-THz photonics-based technology devices developed as part of the TERAPOD project, comprising the monolithically integrated Silicon Nitride photonic integrated circuit for phase distribution, the 1×4 array of integrated Uni-Travelling Carrier Photo-Diodes (UTC-PDs) and the radiative design of the high-frequency four element linear patch antenna array based on Benzocyclobutene (BCB) layers. We also report the suitability to assemble all those components in a robust small-form factor hybrid package

    High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy

    Full text link
    The first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth techniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE. The UTC epitaxial structure contains a 300 nm n-InP collection layer and a 300 nm n++-InGaAsP waveguide layer. UTC-PDs integrated with Coplanar Waveguides (CPW) exhibit 3 dB bandwidth greater than 65 GHz and output RF power of 1.1 dBm at 100 GHz. We also demonstrate accurate prediction of the absolute level of power radiated by our antenna integrated UTCs, between 200 GHz and 260 GHz, using 3d full-wave modelling and taking the UTC-to-antenna impedance match into account. Further, we present the first optical 3d full-wave modelling of waveguide UTCs, which provides a detailed insight into the coupling between a lensed optical fibre and the UTC chip.Comment: 19 pages, 24 figure

    Vertically illuminated TW-UTC photodiodes for terahertz generation

    Get PDF
    More efficient and powerful continuous-wave photonic mixers as terahertz sources are motivated by the need of more versatile local oscillators for submillimeter/terahertz receiver systems. Uni-Travelling Carrier (UTC) photodiodes are very prospective candidates for reaching this objective, but so far only have been reported as lumped-elements or as edge-illuminated optical-waveguide travelling-wave (TW) devices. To overcome the associated power limitations of those implementations, we are developing a novel implementation of the UTC photodiodes which combines a traveling-wave photomixer with vertical velocity-matched illumination in a distributed structure. In this implementation called velocity-matched travelling-wave uni-travelling carrier photodiode, it is possible to obtain in-situ velocity matching of the beat-fringes of the two angled laser beams with the submm/THz-wave on the stripline. In this way, minimum frequency roll-off is achieved by tuning the angle between the two laser beams. A first design of these TW-UTC PDs from our Terahertz Photonics Laboratory at University of Chile has been micro-fabricated at the MC2 cleanroom facility at Chalmers Technical University

    Photodiodes for Terahertz Applications

    Get PDF
    Terahertz generation using high-speed photodiodes has found commercial application in many areas ranging across spectroscopy, imaging and communications. In this paper we discuss the optimization of high-speed photodiodes in terms of bandwidth and output power. We identify some of the main limitations in the generation of high output power in the Terahertz frequency band. We present a modelling tool for the numerical evaluation of antenna coupled uni-travelling carrier photodiodes and experimental evaluation of the fabricated designs. We also present a thermal analysis of the photodiodes alongside pulsed measurements of the output power saturation

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF
    • …
    corecore