97 research outputs found

    Indium Antimonide Nanowires: Synthesis and Properties

    Get PDF
    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors

    Multilayer Thin Films

    Get PDF
    This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties. Of late, graphene and graphene-related derivatives have been proven as the most versatile two-dimensional nanomaterials with superb mechanical, electrical, electronic, optical, and magnetic properties. To understand the in-depth technology, an effort has been made to explain the basics of nano dimensional materials. The importance of nano particles in various aspects of nano technology is clearly indicated. There is more than one chapter describing the use of nanomaterials as sensors. In this volume, an effort has been made to clarify the use of such materials from non-conductor to highly conducting species. It is expected that this book will be useful to the postgraduate and research students as this is a multidisciplinary subject

    Multilayer Thin Films

    Get PDF
    This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties

    Multilayer Thin Films

    Get PDF
    This book, "Multilayer Thin Films-Versatile Applications for Materials Engineering", includes thirteen chapters related to the preparations, characterizations, and applications in the modern research of materials engineering. The evaluation of nanomaterials in the form of different shapes, sizes, and volumes needed for utilization in different kinds of gadgets and devices. Since the recently developed two-dimensional carbon materials are proving to be immensely important for new configurations in the miniature scale in the modern technology, it is imperative to innovate various atomic and molecular arrangements for the modifications of structural properties

    Indium Antimonide Nanowires:Synthesis and Properties

    Get PDF
    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors

    Electrical Characterization of Nanopolyaniline/Porous Silicon Heterojunction at High Temperatures

    Get PDF
    Nanopolyaniline/p-type porous silicon (NPANI/PSi) heterojunction films were chemically fabricated via in situ polymerization. The composition and morphology of the nanopolymer were confirmed using Fourier transform infrared, scanning electron microscopy, UV-visible, and transmission electron microscopy techniques. The results indicated that the polymerization took place throughout the porous layer. The I-V measurements, performed at different temperatures, enabled the calculation of ideality factor, barrier height, and series resistance of those films. The obtained ideality factor showed a nonideal diode behavior. The series resistance was found to decrease with increasing temperature

    Semiconductor Infrared Devices and Applications

    Get PDF
    Infrared (IR) technologies—from Herschel’s initial experiment in the 1800s to thermal detector development in the 1900s, followed by defense-focused developments using HgCdTe—have now incorporated a myriad of novel materials for a wide variety of applications in numerous high-impact fields. These include astronomy applications; composition identifications; toxic gas and explosive detection; medical diagnostics; and industrial, commercial, imaging, and security applications. Various types of semiconductor-based (including quantum well, dot, ring, wire, dot in well, hetero and/or homo junction, Type II super lattice, and Schottky) IR (photon) detectors, based on various materials (type IV, III-V, and II-VI), have been developed to satisfy these needs. Currently, room temperature detectors operating over a wide wavelength range from near IR to terahertz are available in various forms, including focal plane array cameras. Recent advances include performance enhancements by using surface Plasmon and ultrafast, high-sensitivity 2D materials for infrared sensing. Specialized detectors with features such as multiband, selectable wavelength, polarization sensitive, high operating temperature, and high performance (including but not limited to very low dark currents) are also being developed. This Special Issue highlights advances in these various types of infrared detectors based on various material systems

    Surface-Mounted Metal-Organic Frameworks as the Platform for Surface Science: Photoreactivity, Electroreactivity, and Thermal Reactivity

    Get PDF
    Bisher haben Forscher Modellsysteme wie Einkristallmetalle oder Metalloxide entwickelt, um reale Pulversysteme besser zu verstehen. Es bestehen jedoch immer noch Fragen hinsichtlich der Oberflächenstruktur und Reaktivität von MOFs (Metall-organische Gerüstverbindungen). Glücklicherweise bieten oberflächenorientierte SURMOFs (surface-oriented SURMOFs) einen alternativen Ansatz für den Aufbau von Modellplattformen zur Untersuchung dieser grundlegenden Aspekte von MOFs. Diese Arbeit konzentriert sich auf die organische Photochemie, Elektrokatalyse und thermische Pyrolyse von MOFs aus einer physikalisch-chemischen Perspektive unter Verwendung von Oberflächenwissenschaftstechniken und SURMOF-Plattformen. Das Ziel dieser Arbeit besteht nicht nur darin, das Wissen über MOFs und SURMOFs zu erweitern, sondern auch die Leistungsfähigkeit von Oberflächenwissenschaftstechniken und -methoden im Bereich chemischer Reaktionen zu demonstrieren. Zu diesem Zweck verwendet die Arbeit eine hochmoderne UHV-IRRAS-Apparatur (Ultra-High-Vacuum Infrared Reflection Absorption Spectroscopy). Ein auf der Oberfläche montiertes MOF (SURMOF) Modellsystem mit Azid-Seitenketten wurde erfolgreich hergestellt und genau überwacht, um chemische Veränderungen während des Betriebs zu erfassen. Die umfassenden Ergebnisse, die durch die Kombination von IRRAS mit in situ XRD, MS und XPS erzielt wurden, zeigen, dass die Photoreaktion von Azid durch die Bildung von hochaktiven Nitren-Gruppen initiiert wird, die anschließend mit benachbarten C=C-Bindungen des Gerüsts reagieren und Pyrrol-Derivate durch intramolekulare Aminierung erzeugen. Ein hochwertiges ZIF-67-SURMOF wurde in einem Flüssigphasen-Schicht-für-Schicht-Verfahren hergestellt und erstmals in der Sauerstoffentwicklungskatalyse (OER) eingesetzt. Die katalytisch aktiven Spezies, CoOOH, in den SURMOF-Derivaten wurden identifiziert, was Einblicke in die Mechanismen der strukturellen Transformation und die Struktur-Leistung-Beziehungen bietet. Durch Zugabe von Ni und B wurde die Überspannung auf 375 mV bei 10 mA/cm2 reduziert. Zusätzlich wurden in situ IRRAS und XPS verwendet, um die strukturellen Übergänge von ZIF-67 zu kohlenstoffhaltigen Materialien mit Stickstoffelementen zu enthüllen. NEXAFS-Daten zeigen eine abschließende graphitische Struktur der kohlenstoffhaltigen Materialien nach Pyrolyse bei 900 K. Hoffentlich kann diese Arbeit das grundlegende Verständnis und die Anwendungsfelder von auf MOF und SURMOF basierenden Materialien erweitern

    NREL Photovoltaic Program FY 1995 annual report

    Full text link

    Group III-V Nanowire Growth and Characterization

    Get PDF
    Electronic and optical devices typically use bulk or quantum wells today, but nanowires are promising building blocks for future devices, due to their structural characterizations of larger aspect ratio and smaller volume. In situ growth of semiconductor devices is extremely attractive, as it doesn’t require expensive lithography treatment. Over the past ten years, a great deal of work has been done to explore NW, incorporation of group III-V materials and band engineering for the electronic and optoelectronic devices. Because pseudo one-dimensional heterostructures may be grown without involving lattice mismatch defects, NWs may give rise to superior electronic, photonic, and magnetic performances as compared to conventional bulk or planar structures
    • …
    corecore