97 research outputs found

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    Ion-sensitive field effect transistor (ISFET) for MEMS multisensory chips at RIT

    Get PDF
    This study involves the design and fabrication of an Ion-Sensitive Field Effect Transistor (ISFET), which is aimed to be incorporated into the multisensory chips fabricated at RIT. ISFETs are used for various purposes in biomedical, medicine, and chemical applications and have advantages such as small size, low power consumption, robustness, and fast response time, over the ion-selective electrode (ISE) counterparts. The capability of fabricating ISFETs in a standard CMOS process let them to be used in sensor systems together with the dedicated signal processing circuitry which in turn makes portable applications possible. The ISFET fabricated in this study have a SiO2 gate oxide and on top of that a Si3N4 layer. The latter layer, in addition to passivating the device, serves as a pH sensitive membrane. The overall process has 5 mask levels and the electrical tests, which were performed using buffer solutions with varying pH values, indicated that the transistor can be employed to measure the pH of solutions. ISFETs were also tested against environmental conditions such as temperature, long term exposure to various pH-valued solutions and it is found out that the FETs are quite robust in terms of temperature stability and long term drift. In addition to their pH sensing properties, these devices were also taken one step ahead to sense chloride ion (Cl-) concentration via preparing a Cl--sensitive membrane stacked on top of the Si3N4 layer. Electrical tests, which were performed in solutions with various Cl- concentrations, showed that the modified ISFETs are also Cl- sensitive

    Graphene inspired sensing devices

    Get PDF
    Graphene’s exciting characteristics such as high mechanical strength, tuneable electrical prop- erties, high thermal conductivity, elasticity, large surface-to-volume ratio, make it unique and attractive for a plethora of applications including gas and liquid sensing. Adsorption, the phys- ical bonding of molecules on solid surfaces, has huge impact on the electronic properties of graphene. We use this to develop gas sensing devices with faster response time by suspending graphene over large area (cm^2) on silicon nanowire arrays (SiNWAs). These are fabricated by two-step metal-assisted chemical etching (MACE) and using a home-developed polymer-assisted graphene transfer (PAGT) process. The advantage of suspending graphene is the removal of diffusion-limited access to the adsorption sites at the interface between graphene and its support. By modifying the Langmuir adsorption model and fitting the experimental response curves, we find faster response times for both ammonia and acetone vapours. The use of suspended graphene improved the overall response, based on speed and amplitude of response, by up to 750% on average. This device could find applications in biomedical breath analysis for diseases such lung cancer, asthma, kidney failure and more. Taking advantage of the mechanical strength of graphene and using the developed PAGT process, we transfer it on commercial (CMOS) Ion-Sensitive Field-Effect Transistor (ISFET) arrays. The deposition of graphene on the top sensing layer reduces drift that results from the surface modification during exposure to electrolyte while improving the overall performance by up to about 10^13 % and indicates that the ISFET can operate with metallic sensing membrane and not only with insulating materials as confirmed by depositing Au on the gate surface. Post- processing of the ISFET top surface by reactive ion plasma etching, proved that the physical location of trapped charge lies within the device structure. The process improved its overall performance by about 105 %. The post-processing of the ISFET could be applied for sensor performance in any of its applications including pH sensing for DNA sequencing and glucose monitoring.Open Acces

    Digital CMOS ISFET architectures and algorithmic methods for point-of-care diagnostics

    Get PDF
    Over the past decade, the surge of infectious diseases outbreaks across the globe is redefining how healthcare is provided and delivered to patients, with a clear trend towards distributed diagnosis at the Point-of-Care (PoC). In this context, Ion-Sensitive Field Effect Transistors (ISFETs) fabricated on standard CMOS technology have emerged as a promising solution to achieve a precise, deliverable and inexpensive platform that could be deployed worldwide to provide a rapid diagnosis of infectious diseases. This thesis presents advancements for the future of ISFET-based PoC diagnostic platforms, proposing and implementing a set of hardware and software methodologies to overcome its main challenges and enhance its sensing capabilities. The first part of this thesis focuses on novel hardware architectures that enable direct integration with computational capabilities while providing pixel programmability and adaptability required to overcome pressing challenges on ISFET-based PoC platforms. This section explores oscillator-based ISFET architectures, a set of sensing front-ends that encodes the chemical information on the duty cycle of a PWM signal. Two initial architectures are proposed and fabricated in AMS 0.35um, confirming multiple degrees of programmability and potential for multi-sensing. One of these architectures is optimised to create a dual-sensing pixel capable of sensing both temperature and chemical information on the same spatial point while modulating this information simultaneously on a single waveform. This dual-sensing capability, verified in silico using TSMC 0.18um process, is vital for DNA-based diagnosis where protocols such as LAMP or PCR require precise thermal control. The COVID-19 pandemic highlighted the need for a deliverable diagnosis that perform nucleic acid amplification tests at the PoC, requiring minimal footprint by integrating sensing and computational capabilities. In response to this challenge, a paradigm shift is proposed, advocating for integrating all elements of the portable diagnostic platform under a single piece of silicon, realising a ``Diagnosis-on-a-Chip". This approach is enabled by a novel Digital ISFET Pixel that integrates both ADC and memory with sensing elements on each pixel, enhancing its parallelism. Furthermore, this architecture removes the need for external instrumentation or memories and facilitates its integration with computational capabilities on-chip, such as the proposed ARM Cortex M3 system. These computational capabilities need to be complemented with software methods that enable sensing enhancement and new applications using ISFET arrays. The second part of this thesis is devoted to these methods. Leveraging the programmability capabilities available on oscillator-based architectures, various digital signal processing algorithms are implemented to overcome the most urgent ISFET non-idealities, such as trapped charge, drift and chemical noise. These methods enable fast trapped charge cancellation and enhanced dynamic range through real-time drift compensation, achieving over 36 hours of continuous monitoring without pixel saturation. Furthermore, the recent development of data-driven models and software methods open a wide range of opportunities for ISFET sensing and beyond. In the last section of this thesis, two examples of these opportunities are explored: the optimisation of image compression algorithms on chemical images generated by an ultra-high frame-rate ISFET array; and a proposed paradigm shift on surface Electromyography (sEMG) signals, moving from data-harvesting to information-focused sensing. These examples represent an initial step forward on a journey towards a new generation of miniaturised, precise and efficient sensors for PoC diagnostics.Open Acces

    Chemical Bionics - a novel design approach using ion sensitive field effect transistors

    No full text
    In the late 1980s Carver Mead introduced Neuromorphic engineering in which various aspects of the neural systems of the body were modelled using VLSI1 circuits. As a result most bio-inspired systems to date concentrate on modelling the electrical behaviour of neural systems such as the eyes, ears and brain. The reality is however that biological systems rely on chemical as well as electrical principles in order to function. This thesis introduces chemical bionics in which the chemically-dependent physiology of specific cells in the body is implemented for the development of novel bio-inspired therapeutic devices. The glucose dependent pancreatic beta cell is shown to be one such cell, that is designed and fabricated to form the first silicon metabolic cell. By replicating the bursting behaviour of biological beta cells, which respond to changes in blood glucose, a bio-inspired prosthetic for glucose homeostasis of Type I diabetes is demonstrated. To compliment this, research to further develop the Ion Sensitive Field Effect Transistor (ISFET) on unmodified CMOS is also presented for use as a monolithic sensor for chemical bionic systems. Problems arising by using the native passivation of CMOS as a sensing surface are described and methods of compensation are presented. A model for the operation of the device in weak inversion is also proposed for exploitation of its physical primitives to make novel monolithic solutions. Functional implementations in various technologies is also detailed to allow future implementations chemical bionic circuits. Finally the ISFET integrate and fire neuron, which is the first of its kind, is presented to be used as a chemical based building block for many existing neuromorphic circuits. As an example of this a chemical imager is described for spatio-temporal monitoring of chemical species and an acid base discriminator for monitoring changes in concentration around a fixed threshold is also proposed

    Developing ultrasensitive and CMOS compatible ISFETs in the BEOL of industrial UTBB FDSOI transistors

    Get PDF
    Le marché des capteurs a récemment connu une croissance spectaculaire alimentée par l'application remarquable de capteurs dans l'électronique de consommation, l'industrie de l'automatisation, les appareils portables, le secteur automobile et l'internet des objets de plus en plus adopté. La technologie avancée des complementary metal oxide semiconductor (CMOS), les technologies de nano et de micro-fabrication et les plateformes de synthèse de matériaux innovantes sont également des moteurs du développement incroyable de l'industrie des capteurs. Ces progrès ont permis la réalisation de capteurs dotés de nombreuses caractéristiques telles que la précision accrue, les dimensions miniaturisées, l’intégrabilité, la production de masse, le coût très réduit et le temps de réponse rapide. Les ion-sensitive field-effect transistors (ISFETs) sont des capteurs à l'état solide (bio) chimiques, destinés à la détection des ions H+ (pH), Na+ et K+. Malgré cela, la commercialisation des ISFETs est encore à ses balbutiements, après près de cinq décennies de recherche et développement. Cela est dû principalement à la sensibilité limitée, à la controverse sur l'utilisation de l'électrode de référence pour le fonctionnement des ISFETs et à des problèmes de stabilité. Dans cette thèse, les ISFETs ultrasensibles et compatibles CMOS sont intégrés dans le BEOL des transistors UTBB FDSOI standard. Un circuit diviseur capacitif est utilisé pour polariser la grille d’avant afin d'assurer des performances stables du capteur. En exploitant la fonction d’amplification intrinsèque fournie par les transistors UTBB FDSOI, nous avons présenté des ISFET ultra sensibles. L'amplification découle du fort couplage électrostatique entre la grille avant et la grille arrière du FDSOI et des capacités asymétriques des deux grilles. Un changement de tension au niveau de la grille avant apparaît sur la grille arrière sous la forme d'un décalage amplifié de la tension. L'amplification, représentée par le facteur de couplage (γ), est égale au rapport de la capacité de l'oxyde de grille et de la capacité de le buried oxide (BOX). Par conséquent, en fonctionnalisant la détection du pH sur la grille avant pour les dispositifs FDSOI, la modification du potentiel de surface sur la grille avant est détectée par la grille arrière et amplifiée du facteur de couplage (γ), donnant lieu à un capteur chimique à l'état solide à sensibilité ultra-élevée. L'intégration de la fonctionnalité de détection a été réalisée en back end of line (BEOL), ce qui offre les avantages d'une fiabilité et d'une durée de vie accrues du capteur, d'une compatibilité avec le processus CMOS standard et d'une possibilité d'intégration d'un circuit diviseur capacitif. Le fonctionnement des MOSFETs, sans une polarisation appropriée de la grille avant, les rend vulnérables aux effets de grilles flottantes indésirables. Le circuit diviseur capacitif résout ce problème en polarisant la grille avant tout enmaintenant la fonctionnalité de détection sur la même grille par un couplage capacitif au métal commun du BEOL. Par conséquent, le potentiel au niveau du métal BEOL est une somme pondérée du potentiel de surface au niveau de la grille de détection et de la polarisation appliquée au niveau de la grille de contrôle. Le capteur proposé est modélisé et simulé à l'aide de TCAD-Sentaurus. Un modèle mathématique complet a été développé. Il fournit la réponse du capteur en fonction du pH de la solution (entrée du capteur) et des paramètres de conception du circuit diviseur capacitif et du transistor UTBB FDSOI. Dans ce cas, des résultats cohérents ont été obtenus des travaux de modélisation et de simulation, avec une sensibilité attendue de 780 mV / pH correspondant à un film de détection ayant une réponse de Nernst. La modélisation et la simulation du capteur proposé ont également été validées par une fabrication et une caractérisation du capteur de pH à grille étendue avec validation de son concept. Ces capteurs ont été développés par un traitement séparé du composant de détection de pH, qui est connecté électriquement au transistor uniquement lors de la caractérisation du capteur. Ceci permet une réalisation plus rapide et plus simple du capteur sans avoir besoin de masques et de motifs par lithographie. Les capteurs à grille étendue ont présenté une sensibilité de 475 mV/pH, ce qui est supérieur aux ISFET de faible puissance de l'état de l’art. Enfin, l’intégration de la fonctionnalité de détection directement dans le BEOL des dispositifs FDSOI UTBB a été poursuivie. Une sensibilité expérimentale de 730 mV/pH a été obtenue, ce qui confirme le modèle mathématique et la réponse simulée. Cette valeur est 12 fois supérieure à la limite de Nernst et supérieure aux capteurs de l'état de l’art. Les capteurs sont également évalués pour la stabilité, la résolution, l'hystérésis et la dérive dans lesquels d'excellentes performances sont démontrées. Une nouvelle architecture de détection du pH est également démontrée avec succès, dans laquelle la détection est fonctionnalisée au niveau de la diode de protection de la grille plutôt que de la grille avant des dispositifs UTBB FDSOI. La commutation de courant abrupte, aussi basse que 9 mV/decade, pourrait potentiellement augmenter la sensibilité de polarisation fixée à 6,6 decade/pH. Nous avons démontré expérimentalement une sensibilité de 1,25 decade/pH supérieure à la sensibilité reportée à l’état de l’art.Abstract: The sensor market has recently seen a dramatic growth fueled by the remarkable application of sensors in the consumer electronics, automation industry, wearable devices, the automotive sector, and in the increasingly adopted internet of things (IoT). The advanced complementary metal oxide semiconductor (CMOS) technology, the nano and micro fabrication technologies, and the innovative material synthesis platforms are also driving forces for the incredible development of the sensor industry. These technological advancements have enabled realization of sensors with characteristic features of increased accuracy, miniaturized dimension, integrability, volume production, highly reduced cost, and fast response time. Ion-sensitive field-effect transistors (ISFETs) are solid state (bio)chemical sensors, for pH (H+), Na+, K+ ion detection, that are equipped with the promise of the highly aspired features of CMOS devices. Despite this, the commercialization of ISFETs is still at the stage of infancy after nearly five decades of research and development. This is due mainly to the limited sensitivity, the controversy over the use of the reference electrode for ISFET operation, and because of stability issues. In this thesis, ultrasensitive and CMOS compatible ISFETs are integrated in the back end of line (BEOL) of standard UTBB FDSOI transistors. A capacitive divider circuit is employed for biasing the front gate for stable performance of the sensor. Exploiting the intrinsic amplification feature provided by UTBB FDSOI transistors, we demonstrated ultrahigh sensitive ISFETs. The amplification arises from the strong electrostatic coupling between the front gate and the back gate of the FDSOI, and the asymmetric capacitances of the two gates. A change in voltage at the front gate appears at the back gate as an amplified shift in voltage. The amplification, referred to as the coupling factor (γ), is equal to the ratio of the gate oxide capacitance and the buried oxide (BOX) capacitance. Therefore, functionalizing the pH sensing at the front gate of FDSOI devices, the change in surface potential at the front gate is detected at the back gate amplified by the coupling factor (γ), giving rise to an ultrahigh-sensitive solid state chemical sensor. Integration of the sensing functionality was made in the BEOL which gives the benefits of increased reliability and life time of the sensor, compatibility with the standard CMOS process, and possibility for embedding a capacitive divider circuit. Operation of the MOSFETs without a proper front gate bias makes them vulnerable for undesired floating body effects. The capacitive divider circuit addresses these issues by biasing the front gate simultaneously with the sensing functionality at the same gate through capacitive coupling to a common BEOL metal. Therefore, the potential at the BEOL metal would be a weighted sum of the surface potential at the sensing gate and the applied bias at the control gate. The proposed sensor is modeled and simulated using TCAD-Sentaurus. A complete mathematical model is developed which provides the output of the sensor as a function of the solution pH (input to the sensor), and the design parameters of the capacitive divider circuit and the UTBB FDSOI transistor. In that case, consistent results have been obtained from the modeling and simulation works, with an expected sensitivity of 780 mV/pH corresponding to a sensing film having Nernst response. The modeling and simulation of the proposed sensor was further validated by a proof of concept extended gate pH sensor fabrication and characterization. These sensors were developed by a separated processing of just the pH sensing component, which is electrically connected to the transistor only during characterization of the sensor. This provides faster and simpler realization of the sensor without the need for masks and patterning by lithography. The extended gate sensors showed 475 mV/pH sensitivity which is superior to state of the art low power ISFETs. Finally, integration of the sensing functionality directly in the BEOL of the UTBB FDSOI devices was pursued. An experimental sensitivity of 730 mV/pH is obtained which is consistent with the mathematical model and the simulated response. This is more than 12-times higher than the Nernst limit, and superior to state of the art sensors. Sensors are also evaluated for stability, resolution, hysteresis, and drift in which excellent performances are demonstrated. A novel pH sensing architecture is also successfully demonstrated in which the detection is functionalized at the gate protection diode rather than the front gate of UTBB FDSOI devices. The abrupt current switching, as low as 9 mV/decade, has the potential to increase the fixed bias sensitivity to 6.6 decade/pH. We experimentally demonstrated a sensitivity of 1.25 decade/pH which is superior to the state of the art sensitivity

    Multiplexed Biosensors for Drug Discovery Applications

    Get PDF

    Laser direct written silicon nanowires for electronic and sensing applications

    Get PDF
    Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, orientation, and length. The synthesized nanowires have been fabricated into field effect transistors (FETs) and FET sensors. The FET sensors are employed to detect the proton concentration (pH) of an aqueous solution and highly sensitive pH sensing is demonstrated. Both top- and back-gated silicon nanowire FETs are demonstrated and electrically characterized. In addition, modulation-doped nanowires are synthesized by changing dopant gases during the nanowire growth. The axial p-n junction nanowires are electrically characterized to demonstrate the diode behavior and the transition between dopant levels are measured using Kelvin probe force microscopy
    corecore