3,428 research outputs found

    Fabrication of microcantilever-based IO grated waveguide sensors for detection of nano-displacements

    Get PDF
    We propose a novel and highly sensitive integrated read-out scheme, capable of detecting sub-nanometre deflections of a cantilever in close proximity to a grated waveguide structure. A very compact and stable sensor element can be realized by monolithically integrating a microcantilever structure with the grated waveguide (GWG), using conventional layer deposition and sacrificial layer etching techniques. The platform integrating a high quality GWG and a low initial bending cantilever has been fabricated and characterized

    Ion-beam-assisted fabrication and manipulation of metallic nanowires

    Get PDF
    Metallic nanowires (NWs) are the key performers for future micro/nanodevices. The controlled manoeuvring and integration of such nanoscale entities are essential requirements. Presented is a discussion of a fabrication approach that combines chemical etching and ion beam milling to fabricate metallic NWs. The shape modification of the metallic NWs using ion beam irradiation (bending towards the ion beam side) is investigated. The bending effect of the NWs is observed to be instantaneous and permanent. The ion beam-assisted shape manoeuvre of the metallic structures is studied in the light of ion-induced vacancy formation and reconfiguration of the damaged layers. The manipulation method can be used for fabricating structures of desired shapes and aligning structures at a large scale. The controlled bending method of the metallic NWs also provides an understanding of the strain formation process in nanoscale metals

    Electric field and tip geometry effects on dielectrophoretic growth of carbon nanotube nanofibrils on scanning probes

    Full text link
    Single-wall carbon nanotube (SWNT) nanofibrils were assembled onto a variety of conductive scanning probes including atomic force microscope (AFM) tips and scanning tunnelling microscope (STM) needles using positive dielectrophoresis (DEP). The magnitude of the applied electric field was varied in the range of 1-20 V to investigate its effect on the dimensions of the assembled SWNT nanofibrils. Both length and diameter grew asymptotically as voltage increased from 5 to 18 V. Below 4 V, stable attachment of SWNT nanofibrils could not be achieved due to the relatively weak DEP force versus Brownian motion. At voltages of 20 V and higher, low quality nanofibrils resulted from incorporating large amounts of impurities. For intermediate voltages, optimal nanofibrils were achieved, though pivotal to this assembly is the wetting behaviour upon tip immersion in the SWNT suspension drop. This process was monitored in situ to correlate wetting angle and probe geometry (cone angles and tip height), revealing that probes with narrow cone angles and long shanks are optimal. It is proposed that this results from less wetting of the probe apex, and therefore reduces capillary forces and especially force transients during the nanofibril drawing process. Relatively rigid probes (force constant >= 2 N/m) exhibited no perceivable cantilever bending upon wetting and de-wetting, resulting in the most stable process control

    Applications of polarized metallic nanostructures.

    Get PDF
    Gold nanostructures exhibit technologically useful properties when they are polarized in an electric field. In two projects we explore instances where the polarized metal can be used in real world applications. The first project involves gold nanoparticles (GNP) for use in light actuated microelectromechanical systems (MEMS) applications. Although the GNPs were originally designed for volumetric heating in biomedical applications, we treat them as a thin film coating, opening the door for these particles to be used in MEMS applications. This work characterizes the thermal properties of gold nanoparticles on surfaces for spatially-targeted thermal actuation in MEMS systems. The second project deals with metalized nanopore membranes for use in microfluidic applications. For this project several models and experiments were performed on electroosmotic flows driven by charge separation at polarized nanopore surfaces. Until this work, the flow-through geometry remained unexplored for induced charge electroosmotic flow (ICEO)
    • 

    corecore