1,040 research outputs found

    Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics

    Get PDF
    open5openGIANLUCA RUFFATO, 1; FILIPPO ROMANATO, ; 1Department of Physics and Astronomy ‘G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c.so Stati Uniti 4GIANLUCA RUFFATO, 1; Romanato, Filippo; Ruffato, Gianluca; Astronomy ‘. G. Galilei’, University of Padova; 2Laboratory for Nanofabrication of Nanodevices, c. so Stati Uniti

    Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics

    Get PDF
    In recent years, mode-division multiplexing (MDM) has been proposed as a promising solution in order to increase the information capacity of optical networks both in free-space and in optical fiber transmission. Here we present the design, fabrication and test of diffractive optical elements for mode-division multiplexing based on optical transformations in the visible range. Diffractive optics have been fabricated by means of 3D high-resolution electron beam lithography on polymethylmethacrylate resist layer spun over a glass substrate. The same optical sequence was exploited both for input-mode multiplexing and for mode sorting after free-space propagation. Their high miniaturization level and efficiency make these optical devices ideal for integration into next-generation platforms for mode-division (de)multiplexing in telecom applications.Comment: 4 pages, 1 extended references page, 6 figures. arXiv admin note: substantial text overlap with arXiv:1610.0744

    Spatially integrated erbium-doped fiber amplifiers enabling space-division multiplexing

    Get PDF
    L'augmentation exponentielle de la demande de bande passante pour les communications laisse présager une saturation prochaine de la capacité des réseaux de télécommunications qui devrait se matérialiser au cours de la prochaine décennie. En effet, la théorie de l’information prédit que les effets non linéaires dans les fibres monomodes limite la capacité de transmission de celles-ci et peu de gain à ce niveau peut être espéré des techniques traditionnelles de multiplexage développées et utilisées jusqu’à présent dans les systèmes à haut débit. La dimension spatiale du canal optique est proposée comme un nouveau degré de liberté qui peut être utilisé pour augmenter le nombre de canaux de transmission et, par conséquent, résoudre cette menace de «crise de capacité». Ainsi, inspirée par les techniques micro-ondes, la technique émergente appelée multiplexage spatial (SDM) est une technologie prometteuse pour la création de réseaux optiques de prochaine génération. Pour réaliser le SDM dans les liens de fibres optiques, il faut réexaminer tous les dispositifs intégrés, les équipements et les sous-systèmes. Parmi ces éléments, l'amplificateur optique SDM est critique, en particulier pour les systèmes de transmission pour les longues distances. En raison des excellentes caractéristiques de l'amplificateur à fibre dopée à l'erbium (EDFA) utilisé dans les systèmes actuels de pointe, l'EDFA est à nouveau un candidat de choix pour la mise en œuvre des amplificateurs SDM pratiques. Toutefois, étant donné que le SDM introduit une variation spatiale du champ dans le plan transversal de la fibre, les amplificateurs à fibre dopée à l'erbium spatialement intégrés (SIEDFA) nécessitent une conception soignée. Dans cette thèse, nous examinons tout d'abord les progrès récents du SDM, en particulier les amplificateurs optiques SDM. Ensuite, nous identifions et discutons les principaux enjeux des SIEDFA qui exigent un examen scientifique. Suite à cela, la théorie des EDFA est brièvement présentée et une modélisation numérique pouvant être utilisée pour simuler les SIEDFA est proposée. Sur la base d'un outil de simulation fait maison, nous proposons une nouvelle conception des profils de dopage annulaire des fibres à quelques-modes dopées à l'erbium (ED-FMF) et nous évaluons numériquement la performance d’un amplificateur à un étage, avec fibre à dopage annulaire, à ainsi qu’un amplificateur à double étage pour les communications sur des fibres ne comportant que quelques modes. Par la suite, nous concevons des fibres dopées à l'erbium avec une gaine annulaire et multi-cœurs (ED-MCF). Nous avons évalué numériquement le recouvrement de la pompe avec les multiples cœurs de ces amplificateurs. En plus de la conception, nous fabriquons et caractérisons une fibre multi-cœurs à quelques modes dopées à l'erbium. Nous réalisons la première démonstration des amplificateurs à fibre optique spatialement intégrés incorporant de telles fibres dopées. Enfin, nous présentons les conclusions ainsi que les perspectives de cette recherche. La recherche et le développement des SIEDFA offriront d'énormes avantages non seulement pour les systèmes de transmission future SDM, mais aussi pour les systèmes de transmission monomode sur des fibres standards à un cœur car ils permettent de remplacer plusieurs amplificateurs par un amplificateur intégré.The exponential increase of communication bandwidth demand is giving rise to the so-called ‘capacity crunch’ expected to materialize within the next decade. Due to the nonlinear limit of the single mode fiber predicted by the information theory, all the state-of-the-art techniques which have so far been developed and utilized in order to extend the optical fiber communication capacity are exhausted. The spatial domain of the lightwave links is proposed as a new degree of freedom that can be employed to increase the number of transmission paths and, subsequently, overcome the looming ‘capacity crunch’. Therefore, the emerging technique named space-division multiplexing (SDM) is a promising candidate for creating next-generation optical networks. To realize SDM in optical fiber links, one needs to investigate novel spatially integrated devices, equipment, and subsystems. Among these elements, the SDM amplifier is a critical subsystem, in particular for the long-haul transmission system. Due to the excellent features of the erbium-doped fiber amplifier (EDFA) used in current state-of-the-art systems, the EDFA is again a prime candidate for implementing practical SDM amplifiers. However, since the SDM introduces a spatial variation of the field in the transverse plane of the optical fibers, spatially integrated erbium-doped fiber amplifiers (SIEDFA) require a careful design. In this thesis, we firstly review the recent progress in SDM, in particular, the SDM optical amplifiers. Next, we identify and discuss the key issues of SIEDFA that require scientific investigation. After that, the EDFA theory is briefly introduced and a corresponding numerical modeling that can be used for simulating the SIEDFA is proposed. Based on a home-made simulation tool, we propose a novel design of an annular based doping profile of few-mode erbium-doped fibers (FM-EDF) and numerically evaluate the performance of single stage as well as double-stage few-mode erbium-doped fiber amplifiers (FM-EDFA) based on such fibers. Afterward, we design annular-cladding erbium-doped multicore fibers (MC-EDF) and numerically evaluate the cladding pumped multicore erbium-doped fiber amplifier (MC-EDFA) based on these fibers as well. In addition to fiber design, we fabricate and characterize a multicore few-mode erbium-doped fiber (MC-FM-EDF), and perform the first demonstration of the spatially integrated optical fiber amplifiers incorporating such specialty doped fibers. Finally, we present the conclusions as well as the perspectives of this research. In general, the investigation and development of the SIEDFA will bring tremendous benefits not only for future SDM transmission systems but also for current state-of-the-art single-mode single-core transmission systems by replacing plural amplifiers by one integrated amplifier

    Roadmap on multimode photonics

    Get PDF
    Multimode devices and components have attracted considerable attention in the last years, and different research topics and themes have emerged very recently. The multimodality can be seen as an additional degree of freedom in designing devices, thus allowing for the development of more complex and sophisticated components. The propagation of different modes can be used to increase the fiber optic capacity, but also to introduce novel intermodal interactions, as well as allowing for complex manipulation of optical modes for a variety of applications. In this roadmap we would like to give to the readers a comprehensive overview of the most recent developments in the field, presenting contributions coming from different research topics, including optical fiber technologies, integrated optics, basic physics and telecommunications

    Design of Spatial-Mode (De)Multiplexer for Few-Mode Fibers Based on a Cyclically Used Michelson-Like Interferometer

    Get PDF
    Few mode optical fibers are a promising way to continue increasing the data rate in optical communications. However, an efficient method to launch and extract separately each mode is essential. The design of a interferometric spatial mode (de)multiplexer for few mode optical fibers is presented. It is based on a single Michelson-like interferometer which consists of standard optical elements and has a reflective image inverter in one arm. Particular care has been taken in its design so that both polarizations behave the same. Moreover, this interferometer can process several pairs of modes simultaneously. The multiplexer also consists of: a phase plate, focusing optics at both ports of the interferometer and elliptical core fibers to recirculate some outputs. It can multiplex ten spatial and polarization modes and it presents low losses and no intrinsic crosstalk between modes. Additionally, it is polarization insensitive, achromatic, compact and inexpensive. The same system can work as a demultiplexer when used in reverse. In this case, both the losses and the crosstalk remain very low. Similar designs that perform other functions, like an add-drop mode multiplexing, are also suggestedThis research was funded by: Ministerio de Economía, Industria y Competitividad, Gobierno de España, grant number AYA2016-78773-C2-2-P; Xunta de Galicia, Consellería de Educación, Universidades e FP, Grant GRC number ED431C2018/11; and European Regional Development FundS

    Total angular momentum sorting in the telecom infrared with silicon Pancharatnam-Berry transformation optics

    Get PDF
    Parallel sorting of orbital angular momentum (OAM) and polarization has recently acquired paramount importance and interest in a wide range of fields ranging from telecommunications to high-dimensional quantum cryptography. Due to their inherently polarization-sensitive optical response, optical elements acting on the geometric phase prove to be useful for processing structured light beams with orthogonal polarization states by means of a single optical platform. In this work, we present the design, fabrication and test of a Pancharatnam-Berry optical element in silicon implementing a log-pol optical transformation at 1310 nm for the realization of an OAM sorter based on the conformal mapping between angular and linear momentum states. The metasurface is realized in the form of continuously-variant subwavelength gratings, providing high-resolution in the definition of the phase pattern. A hybrid device is fabricated assembling the metasurface for the geometric phase control with multi-level diffractive optics for the polarization-independent manipulation of the dynamic phase. The optical characterization confirms the capability to sort orbital angular momentum and circular polarization at the same time.Comment: 15 pages, 10 figure

    The Photonic Lantern

    Get PDF
    Photonic lanterns are made by adiabatically merging several single-mode cores into one multimode core. They provide low-loss interfaces between single-mode and multimode systems where the precise optical mapping between cores and individual modes is unimportant.Comment: 45 pages; article unchanged, accepted for publication in Advances in Optics and Photonic

    Novel Fibers and Components for Space Division Multiplexing Technologies

    Get PDF
    Passive devices and amplifiers for space division multiplexing are key components for future deployment of this technology and for the development of new applications exploring the spatial diversity of light. Some important devices include photonic lantern (PL) mode multiplexers supporting several modes, fan-in/fan-out (FIFO) devices for multicore fibers (MCFs), and multimode amplifiers capable of amplifying several modes with low differential modal gain penalty. All these components are required to overcome the capacity limit of single mode fiber (SMF) communication systems, driven by the growing data capacity demand. In this dissertation I propose and develop different passive components and amplifiers for space division multiplexing technologies, including PL mode multiplexers with low insertion loss and low mode dependent loss to excite different number of modes into few mode fibers (FMFs). I demonstrate a PL with a graded index core that better matches the mode profiles of a graded index FMF supporting six spatial modes with mode dependent loss (MDL) ranging from 2- to 3-dB over the entire C-band. Multicore fibers can alleviate the capacity limit of single mode fibers by placing multiple single mode cores within the same fiber cladding. However, interfacing single mode fibers to MCFs can be challenging due to physical limitations, in this dissertation I develop and fabricate different types of FIFO devices to couple light into MCFs with high efficiency and having up to 19 cores. I demonstrate high coupling efficiency with insertion loss below 0.5 dB per FIFO into a 4-core MCF and below 1 dB for a 19-core MCF. Multimode erbium doped fiber (EDF) amplifiers are required to amplify each mode within the few mode transmission fiber, the main challenge is to provide an amplifier with low differential modal gain, in this dissertation I present the first coupled-core amplifier concept compatible with FMFs. A 6-core coupled-core EDF can be spliced with low insertion and low MDL to a FMF supporting 6 spatial modes via a slight taper transition. The amplifier introduces 1.8 MDL with gain variation over the entire C-band below 1-dB
    • …
    corecore