3 research outputs found

    Computational Analysis of Antipode Algorithms for the Output Feedback Hopf Algebra

    Get PDF
    The feedback interconnection of two systems written in terms of Chen-Fliess series can be described explicitly in terms of the antipode of the output feedback Hopf algebra. At present, there are three known computational approaches to calculating this antipode: the left coproduct method, the right coproduct method, and the derivation method. Each of these algorithms is defined recursively, and thus becomes computationally expensive quite quickly. This motivates the need for a more complete understanding of the algorithmic complexity of these methods, as well as the development of new approaches for determining the Hopf algebra antipode. The main goals of this thesis are to create an implementation in code of the derivation method and compare the computational performance against existing code for the two coproduct methods in Mathematica. Both temporal and spatial complexity are examined empirically, and the main conclusion is that the derivation method yields the best performance

    Continuity of Formal Power Series Products in Nonlinear Control Theory

    Get PDF
    Formal power series products appear in nonlinear control theory when systems modeled by Chen–Fliess series are interconnected to form new systems. In fields like adaptive control and learning systems, the coefficients of these formal power series are estimated sequentially with real-time data. The main goal is to prove the continuity and analyticity of such products with respect to several natural (locally convex) topologies on spaces of locally convergent formal power series in order to establish foundational properties behind these technologies. In addition, it is shown that a transformation group central to describing the output feedback connection is in fact an analytic Lie group in this setting with certain regularity properties.publishedVersio
    corecore