92 research outputs found

    From stateflow simulation to verified implementation: A verification approach and a real-time train controller design

    Get PDF
    Simulink is widely used for model driven development (MDD) of industrial software systems. Typically, the Simulink based development is initiated from Stateflow modeling, followed by simulation, validation and code generation mapped to physical execution platforms. However, recent industrial trends have raised the demands of rigorous verification on safety-critical applications, which is unfortunately challenging for Simulink. In this paper, we present an approach to bridge the Stateflow based model driven development and a well- defined rigorous verification. First, we develop a self- contained toolkit to translate Stateflow model into timed automata, where major advanced modeling features in Stateflow are supported. Taking advantage of the strong verification capability of Uppaal, we can not only find bugs in Stateflow models which are missed by Simulink Design Verifier, but also check more important temporal properties. Next, we customize a runtime verifier for the generated nonintrusive VHDL and C code of Stateflow model for monitoring. The major strength of the customization is the flexibility to collect and analyze runtime properties with a pure software monitor, which opens more opportunities for engineers to achieve high reliability of the target system compared with the traditional act that only relies on Simulink Polyspace. We incorporate these two parts into original Stateflow based MDD seamlessly. In this way, safety-critical properties are both verified at the model level, and at the consistent system implementation level with physical execution environment in consideration. We apply our approach on a train controller design, and the verified implementation is tested and deployed on a real hardware platform

    AUTSEG: Automatic Test Set Generator for Embedded Reactive Systems

    Get PDF
    Part 2: Tools and FrameworksInternational audienceOne of the biggest challenges in hardware and software design is to ensure that a system is error-free. Small errors in reactive embedded systems can have disastrous and costly consequences for a project. Preventing such errors by identifying the most probable cases of erratic system behavior is quite challenging. In this paper, we introduce an automatic test set generator called AUTSEG. Its input is a generic model of the target system, generated using the synchronous approach. Our tool finds the optimal preconditions for restricting the state space of the model. It only works locally on significant subspaces. Our approach exhibits a simpler and efficient quasi-flattening algorithm than existing techniques and a useful compiled form to check security properties and reduce the combinatorial explosion problem of state space. To illustrate our approach, AUTSEG was applied to the case of a transportation contactless card

    High-Level Synthesis for Embedded Systems

    Get PDF

    Specification and validation of control intensive ICs in hopCP

    Get PDF
    technical reportControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations polling and interrupt driven modes of operation multiple concurrent threads of execution non-trivial computational requirements and programmability. In this paper we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous / Asynchronous Receiver Transmitter (USART), using our hardware description language 'hopCP'. A feature of hopCP is that it supports communication via synchronous ports in addition to synchronous message passing Asynchronous ports are distributed shared variables writable by exactly one process We show the usefulness of this combination of communication constructs We outline algorithms to determine safe usages of asynchronous ports and also to discover other static properties of the specification We discuss a compiled code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study
    • …
    corecore