161 research outputs found

    High-speed fir filter design and optimization using artificial intelligence techniques

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Design and implementation of computationally efficient digital filters

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Synthesis methods for linear-phase FIR filters with a piecewise-polynomial impulse response

    Get PDF
    his thesis concentrates on synthesis methods for linear-phase finite-impulse response filters with a piecewise-polynomial impulse response. One of the objectives has been to find integer-valued coefficients to efficiently implement filters of the piecewise-polynomial impulse response approach introduced by Saram¨aki and Mitra. In this method, the impulse response is divided into blocks of equal length and each block is created by a polynomial of a given degree. The arithmetic complexity of these filters depends on the polynomial degree and the number of blocks. By using integer-valued coefficients it is possible to make the implementation of the subfilters, which generates the polynomials, multiplication-free. The main focus has been on finding computationally-efficient synthesis methods by using a piecewise-polynomial and a piecewise-polynomial-sinusoidal impulse responses to make it possible to implement high-speed, low-power, highly integrated digital signal processing systems. The earlier method by Chu and Burrus has been studied. The overall impulse response of the approach proposed in this thesis consists of the sum of several polynomial-form responses. The arithmetic complexity depends on the polynomial degree and the number of polynomial-form responses. The piecewise-polynomial-sinusoidal approach is a modification of the piecewise-polynomial approach. The subresponses are multiplied by a sinusoidal function and an arbitrary number of separate center coefficients is added. Thereby, the arithmetic complexity depends also on the number of complex multipliers and separately generated center coefficients. The filters proposed in this thesis are optimized by using linear programming methods

    Techniques for Efficient Implementation of FIR and Particle Filtering

    Full text link

    Low Complexity Multiplier-less Modified FRM Filter Bank using MPGBP Algorithm

    Get PDF
    The design of a low complexity multiplier-less narrow transition band filter bank for the channelizer of multi-standard software-defined radio (SDR) is investigated in this paper. To accomplish this, the modal filter and complementary filter in the upper and lower branches of the conventional Frequency Response Masking (FRM) architecture are replaced with two power-complementary and linear phase filter banks. Secondly, a new masking strategy is proposed to fully exploit the potential of the numerous spectra replicas produced by the interpolation of the modal filter, which was previously ignored in the existing FRM design. In this scheme, the two masking filters are appropriately modulated and alternately masked over the spectra replicas from 0 to 2π\pi, to generate even and odd channels. This Alternate Masking Scheme (AMS) increases the potency of the Modified FRM (ModFRM) architecture for the design of a computationally efficient narrow transition band uniform filter bank (termed as ModFRM-FB). Finally, by combining the adjoining ModFRM-FB channels, Non-Uniform ModFRM-FB (NUModFRM-FB) for extracting different communication standards in the SDR channelizer is created. To reduce the total power consumption of the architecture, the coefficients of the proposed system are made multiplier-less using the Matching Pursuits Generalized Bit-Planes (MPGBP) algorithm. In this method, filter coefficients are successively approximated using a dictionary of vectors to give a sum-of-power-of-two (SOPOT) representation. In comparison to all other general optimization techniques, such as genetic algorithms, the suggested design method stands out for its ease of implementation, requiring no sophisticated optimization or exhaustive search schemes. Another notable feature of the suggested approach is that, in comparison to existing methods, the design time for approximation has been greatly reduced. To further bring down the complexity, adders are reused in recurrent SOPOT terms using the Common Sub-expression Elimination (CSE) technique without compromising the filter performance

    Optimizing DSP Circuits by a New Family of Arithmetic Operators

    Get PDF
    IEEE Signal Processing SocietyA new family of arithmetic operators to optimize the implementation of circuits for digital signal processing is presented. Thanks to use of a new technique which reduces the quantification errors, the proposed operators may decrease significantly the size of the circuits required for most applications. That means a simultaneous reduction of area, delay and power consumption.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore