2,481 research outputs found

    FPT-algorithms for some problems related to integer programming

    Full text link
    In this paper, we present FPT-algorithms for special cases of the shortest lattice vector, integer linear programming, and simplex width computation problems, when matrices included in the problems' formulations are near square. The parameter is the maximum absolute value of rank minors of the corresponding matrices. Additionally, we present FPT-algorithms with respect to the same parameter for the problems, when the matrices have no singular rank sub-matrices.Comment: arXiv admin note: text overlap with arXiv:1710.00321 From author: some minor corrections has been don

    Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges

    Full text link
    Computational Social Choice is an interdisciplinary research area involving Economics, Political Science, and Social Science on the one side, and Mathematics and Computer Science (including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    Parameterized Complexity of Problems in Coalitional Resource Games

    Full text link
    Coalition formation is a key topic in multi-agent systems. Coalitions enable agents to achieve goals that they may not have been able to achieve on their own. Previous work has shown problems in coalitional games to be computationally hard. Wooldridge and Dunne (Artificial Intelligence 2006) studied the classical computational complexity of several natural decision problems in Coalitional Resource Games (CRG) - games in which each agent is endowed with a set of resources and coalitions can bring about a set of goals if they are collectively endowed with the necessary amount of resources. The input of coalitional resource games bundles together several elements, e.g., the agent set Ag, the goal set G, the resource set R, etc. Shrot, Aumann and Kraus (AAMAS 2009) examine coalition formation problems in the CRG model using the theory of Parameterized Complexity. Their refined analysis shows that not all parts of input act equal - some instances of the problem are indeed tractable while others still remain intractable. We answer an important question left open by Shrot, Aumann and Kraus by showing that the SC Problem (checking whether a Coalition is Successful) is W[1]-hard when parameterized by the size of the coalition. Then via a single theme of reduction from SC, we are able to show that various problems related to resources, resource bounds and resource conflicts introduced by Wooldridge et al are 1. W[1]-hard or co-W[1]-hard when parameterized by the size of the coalition. 2. para-NP-hard or co-para-NP-hard when parameterized by |R|. 3. FPT when parameterized by either |G| or |Ag|+|R|.Comment: This is the full version of a paper that will appear in the proceedings of AAAI 201
    • …
    corecore