179 research outputs found

    Significant papers from the First 25 Years of the FPL Conference

    Get PDF
    The list of significant papers from the first 25 years of the Field-Programmable Logic and Applications conference (FPL) is presented in this paper. These 27 papers represent those which have most strongly influenced theory and practice in the field.postprin

    Operating System Concepts for Reconfigurable Computing: Review and Survey

    Get PDF
    One of the key future challenges for reconfigurable computing is to enable higher design productivity and a more easy way to use reconfigurable computing systems for users that are unfamiliar with the underlying concepts. One way of doing this is to provide standardization and abstraction, usually supported and enforced by an operating system. This article gives historical review and a summary on ideas and key concepts to include reconfigurable computing aspects in operating systems. The article also presents an overview on published and available operating systems targeting the area of reconfigurable computing. The purpose of this article is to identify and summarize common patterns among those systems that can be seen as de facto standard. Furthermore, open problems, not covered by these already available systems, are identified

    Economic aspects of FPGA technology

    Full text link
    En este PFC se ha recogido y analizado diversa información acerca de la tecnología de Xilinx. Incluyendo los datasheets de Xilinx notas del E.E. Times, informes financieros, y artículos de internet. Todos los datos se han unificado en unas ciento cincuenta figuras y tablas. Además, se han revisado los proceedings de la conferencia FPL desde 1991 (la primera en Oxford) hasta 2013 (el último en Porto).In this PFC, diverse information about Xilinx technology has been collected and analyzed. It includes Xilinx datasheets, notes on E.E. Times, financial reports, and Internet articles. All the data have been unified in around one hundred and fifty figures and tables. In addition, FPL proceedings from 1991 (the first in Oxford) to 2013 (the last in Porto) have been revised

    Run-Time Reconfiguration for HyperTransport coupled FPGAs using ACCFS

    Get PDF
    In this paper we present a solution where only one FPGA is needed in a host coupled system, in which the FPGA can be reconfigured by a user application during run-time without loosing the host link connection. A hardware infrastructure on the FPGA and the software framework ACCFS (ACCelerator File System) on the host system is provided to the user which allow easy handling of reconfiguration and communication between the host and the FPGA. Such a system can be used for offloading compute kernels on the FPGA in high performance computing or exchanging functionality in highly available systems during run-time without loosing the host link during reconfiguration. The implementation was done for a HyperTransport coupled FPGA. The design of a HyperTransport cave was extended in such a way that it provides an infrastructure for run-time reconfigurable (RTR) modules

    Design and development from single core reconfigurable accelerators to a heterogeneous accelerator-rich platform

    Get PDF
    The performance of a platform is evaluated based on its ability to deal with the processing of multiple applications of different nature. In this context, the platform under evaluation can be of homogeneous, heterogeneous or of hybrid architecture. The selection of an architecture type is generally based on the set of different target applications and performance parameters, where the applications can be of serial or parallel nature. The evaluation is normally based on different performance metrics, e.g., resource/area utilization, execution time, power and energy consumption. This process can also include high-level performance metrics, e.g., Operations Per Second (OPS), OPS/Watt, OPS/Hz, Watt/Area etc. An example of architecture selection can be related to a wireless communication system where the processing of computationally-intensive signal-processing algorithms has strict execution-time constraints and in this case, a platform with special-purpose accelerators is relatively more suitable than a typical homogeneous platform. A couple of decades ago, it was expensive to plant many special-purpose accelerators on a chip as the cost per unit area was relatively higher than today. The utilization wall is also becoming a limiting factor in homogeneous multicore scaling which means that all the cores on a platform cannot be operated at their maximum frequency due to a possible thermal meltdown. In this case, some of the processing cores have to be turned-off or to be operated at very low frequencies making most of the part of the chip to stay underutilized. A possible solution lies in the use of heterogeneous multicore platforms where many application-specific cores operate at lower frequencies, therefore reducing power dissipation density and increasing other performance parameters. However, to achieve maximum flexibility in processing, a general-purpose flavor can also be introduced by adding a few Reduced Instruction-Set Computing (RISC) cores. A power class of heterogeneous multicore platforms is an accelerator-rich platform where many application-specific accelerators are loosely connected with each other for work load distribution or to execute the tasks independently. This research work spans from the design and development of three different types of template-based Coarse-Grain Reconfigurable Arrays (CGRAs), i.e., CREMA, AVATAR and SCREMA to a Heterogeneous Accelerator-Rich Platform (HARP). The accelerators generated from the three CGRAs could perform different lengths and types of Fast Fourier Transform (FFT), real and complex Matrix-Vector Multiplication (MVM) algorithms. CREMA and AVATAR were fixed CGRAs with eight and sixteen number of Processing Element (PE) columns, respectively. SCREMA could flex between four, eight, sixteen and thirty two number of PE columns. Many case studies were conducted to evaluate the performance of the reconfigurable accelerators generated from these CGRA templates. All of these CGRAs work in a processor/coprocessor model tightly integrated with a Direct Memory Access (DMA) device. Apart from these platforms, a reconfigurable Application-Specific Instruction-set Processor (rASIP) is also designed, tested for FFT execution under IEEE-802.11n timing constraints and evaluated against a processor/coprocessor model. It was designed by integrating AVATAR generated radix-(2, 4) FFT accelerator into the datapath of a RISC processor. The instruction set of the RISC processor was extended to perform additional operations related to AVATAR. As mentioned earlier, the underutilized part of the chip, now-a-days called Dark Silicon is posing many challenges for the designers. Apart from software optimizations, clock gating, dynamic voltage/frequency scaling and other high-level techniques, one way of dealing with this problem is to use many application-specific cores. In an effort to maximize the number of reconfigurable processing resources on a platform, the accelerator-rich architecture HARP was designed and evaluated in terms of different performance metrics. HARP is constructed on a Network-on-Chip (NoC) of 3x3 nodes where with every node, a CGRA of application-specific size is integrated other than the central node which is attached to a RISC processor. The RISC establishes synchronization between the nodes for data transfer and also performs the supervisory control. While using the NoC as the backbone of communication between the cores, it becomes possible for all the cores to address each other and also perform execution simultaneously and independently of each other. The performance of accelerators generated from CREMA, AVATAR and SCREMA templates were evaluated individually and also when attached to HARP's NoC nodes. The individual CGRAs show promising results in their own capacity but when integrated all together in the framework of HARP, interesting comparisons were established in terms of overall execution times, resource utilization, operating frequencies, power and energy consumption. In evaluating HARP, estimates and measurements were also made in some advanced performance metrics, e.g., in MOPS/mW and MOPS/MHz. The overall research work promotes the idea of heterogeneous accelerator-rich platform as a solution to current problems and future needs of industry and academia

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)(revised 08/2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009)

    Get PDF
    Proceedings of the First International Workshop on HyperTransport Research and Applications (WHTRA2009) which was held Feb. 12th 2009 in Mannheim, Germany. The 1st International Workshop for Research on HyperTransport is an international high quality forum for scientists, researches and developers working in the area of HyperTransport. This includes not only developments and research in HyperTransport itself, but also work which is based on or enabled by HyperTransport. HyperTransport (HT) is an interconnection technology which is typically used as system interconnect in modern computer systems, connecting the CPUs among each other and with the I/O bridges. Primarily designed as interconnect between high performance CPUs it provides an extremely low latency, high bandwidth and excellent scalability. The definition of the HTX connector allows the use of HT even for add-in cards. In opposition to other peripheral interconnect technologies like PCI-Express no protocol conversion or intermediate bridging is necessary. HT is a direct connection between device and CPU with minimal latency. Another advantage is the possibility of cache coherent devices. Because of these properties HT is of high interest for high performance I/O like networking and storage, but also for co-processing and acceleration based on ASIC or FPGA technologies. In particular acceleration sees a resurgence of interest today. One reason is the possibility to reduce power consumption by the use of accelerators. In the area of parallel computing the low latency communication allows for fine grain communication schemes and is perfectly suited for scalable systems. Summing up, HT technology offers key advantages and great performance to any research aspect related to or based on interconnects. For more information please consult the workshop website (http://whtra.uni-hd.de)

    Low-cost, low-power FPGA implementation of ED25519 and CURVE25519 point multiplication

    Get PDF
    Twisted Edwards curves have been at the center of attention since their introduction by Bernstein et al. in 2007. The curve ED25519, used for Edwards-curve Digital Signature Algorithm (EdDSA), provides faster digital signatures than existing schemes without sacrificing security. The CURVE25519 is a Montgomery curve that is closely related to ED25519. It provides a simple, constant time, and fast point multiplication, which is used by the key exchange protocol X25519. Software implementations of EdDSA and X25519 are used in many web-based PC and Mobile applications. In this paper, we introduce a low-power, low-area FPGA implementation of the ED25519 and CURVE25519 scalar multiplication that is particularly relevant for Internet of Things (IoT) applications. The efficiency of the arithmetic modulo the prime number 2 255 − 19, in particular the modular reduction and modular multiplication, are key to the efficiency of both EdDSA and X25519. To reduce the complexity of the hardware implementation, we propose a high-radix interleaved modular multiplication algorithm. One benefit of this architecture is to avoid the use of large-integer multipliers relying on FPGA DSP modules

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria
    • …
    corecore