104 research outputs found

    A partial reconfiguration based microphone array network emulator

    Get PDF
    Nowadays, microphone arrays are used in many applications for sound-source localization or acoustic enhancement. The current Micro-Electro-Mechanical Systems (MEMS) technology allows the development of networks of microphone arrays at a relatively low cost. Unfortunately, the evaluation of these networks requires controlled acoustic environments, such as anechoic chambers, to avoid possible distortions and acoustic artifacts. In this paper, we present a partial reconfigurable FPGA platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network's topology or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. In addition, our platform is also capable to converge to the ideal network with regards to power consumption, while still maintaining the desired level of sound-source localization accuracy. A graphical user interface provides a friendly control of the network and the parameters under test during the execution of the partial reconfiguration operations. Several experiments are presented to demonstrate some of the capabilities of our platform

    Exploiting partial reconfiguration through PCIe for a microphone array network emulator

    Get PDF
    The current Microelectromechanical Systems (MEMS) technology enables the deployment of relatively low-cost wireless sensor networks composed of MEMS microphone arrays for accurate sound source localization. However, the evaluation and the selection of the most accurate and power-efficient network’s topology are not trivial when considering dynamic MEMS microphone arrays. Although software simulators are usually considered, they consist of high-computational intensive tasks, which require hours to days to be completed. In this paper, we present an FPGA-based platform to emulate a network of microphone arrays. Our platform provides a controlled simulated acoustic environment, able to evaluate the impact of different network configurations such as the number of microphones per array, the network’s topology, or the used detection method. Data fusion techniques, combining the data collected by each node, are used in this platform. The platform is designed to exploit the FPGA’s partial reconfiguration feature to increase the flexibility of the network emulator as well as to increase performance thanks to the use of the PCI-express high-bandwidth interface. On the one hand, the network emulator presents a higher flexibility by partially reconfiguring the nodes’ architecture in runtime. On the other hand, a set of strategies and heuristics to properly use partial reconfiguration allows the acceleration of the emulation by exploiting the execution parallelism. Several experiments are presented to demonstrate some of the capabilities of our platform and the benefits of using partial reconfiguration

    On real time optical wireless communication channel emulator design with FPGAs

    Get PDF
    This paper discusses the implementation details of a channel emulator suited for optical wireless communications (OWC) systems. The channel emulator comprises functional blocks able to model the transmitter, the receiver and the channel. It is in this sense a valuable tool for system performance evaluation. The proposed design uses field programmable gate arrays (FPGAs) as supporting hardware platform, enabling flexible and expedite interconnection with other system blocks. The achieved design operates in real time, allowing timely and realistic assessment of the channel and terminal equipment impairments on the overall system. Achieved results demonstrate the feasibility to address channel emulation with 500ps time resolution, with negligible quantization errors when compared to the predefined channel coefficients.publishe

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    Disertační práce je zaměřena na metody a systémy pro měření vzdálenosti a lokalizaci RFID tagů pracujících v pásmu UHF. Úvod je věnován popisu současného stavu vědeckého poznání v oblasti RFID prostorové identifikace a stručnému shrnutí problematiky modelování a návrhu prototypů těchto systémů. Po specifikaci cílů disertace pokračuje práce popisem teorie modelování degenerovaného kanálu pro RFID komunikaci. Detailně jsou rozebrány metody měření vzdálenosti a odhadu směru příchodu signálu založené na zpracování fázové informace. Pro účely lokalizace je navrženo několik scénářů rozmístění antén. Modely degenerovaného kanálu jsou simulovány v systému MATLAB. Významná část této práce je věnována konceptu softwarově definovaného rádia (SDR) a specifikům jeho adaptace na UHF RFID, která využití běžných SDR systémů značně omezují. Diskutována je zejména problematika průniku nosné vysílače do přijímací cesty a požadavky na signál lokálního oscilátoru používaný pro směšování. Prezentovány jsou tři vyvinuté prototypy: experimentální dotazovač EXIN-1, měřicí systém založený na platformě Ettus USRP a anténní přepínací matice pro emulaci SIMO systému. Závěrečná část je zaměřena na testování a zhodnocení popisovaných lokalizačních technik, založených na měření komplexní přenosové funkce RFID kanálu. Popisuje úzkopásmové/širokopásmové měření vzdálenosti a metody odhadu směru signálu. Oba navržené scénáře rozmístění antén jsou v závěru ověřeny lokalizačním měřením v reálných podmínkách.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    Feedback Mechanisms for Centralized and Distributed Mobile Systems

    Get PDF
    The wireless communication market is expected to witness considerable growth in the immediate future due to increasing smart device usage to access real-time data. Mobile devices become the predominant method of Internet access via cellular networks (4G/5G) and the onset of virtual reality (VR), ushering in the wide deployment of multiple bands, ranging from TVWhite Spaces to cellular/WiFi bands and on to mmWave. Multi-antenna techniques have been considered to be promising approaches in telecommunication to optimize the utilization of radio spectrum and minimize the cost of system construction. The performance of multiple antenna technology depends on the utilization of radio propagation properties and feedback of such information in a timely manner. However, when a signal is transmitted, it is usually dispersed over time coming over different paths of different lengths due to reflections from obstacles or affected by Doppler shift in mobile environments. This motivates the design of novel feedback mechanisms that improve the performance of multi-antenna systems. Accurate channel state information (CSI) is essential to increasing throughput in multiinput, multi-output (MIMO) systems with digital beamforming. Channel-state information for the operation of MIMO schemes (such as transmit diversity or spatial multiplexing) can be acquired by feedback of CSI reports in the downlink direction, or inferred from uplink measurements assuming perfect channel reciprocity (CR). However, most works make the assumption that channels are perfectly reciprocal. This assumption is often incorrect in practice due to poor channel estimation and imperfect channel feedback. Instead, experiments have demonstrated that channel reciprocity can be easily broken by multiple factors. Specifically, channel reciprocity error (CRE) introduced by transmitter-receiver imbalance have been widely studied by both simulations and experiments, and the impact of mobility and estimation error have been fully investigated in this thesis. In particular, unmanned aerial vehicles (UAVs) have asymmetric behavior when communicating with one another and to the ground, due to differences in altitude that frequently occur. Feedback mechanisms are also affected by channel differences caused by the user’s body. While there has been work to specifically quantify the losses in signal reception, there has been little work on how these channel differences affect feedback mechanisms. In this dissertation, we perform system-level simulations, implement design with a software defined radio platform, conduct in-field experiments for various wireless communication systems to analyze different channel feedback mechanisms. To explore the feedback mechanism, we then explore two specific real world scenarios, including UAV-based beamforming communications, and user-induced feedback systems

    An AI-based incumbent protection system for collaborative intelligent radio networks

    Get PDF
    Since the early days of wireless communication, wireless spectrum has been allocated according to a static frequency plan, whereby most of the spectrum is licensed for exclusive use by specific services or radio technologies. While some spectrum bands are overcrowded, many other bands are heavily underutilized. As a result, there is a shortage of available spectrum to deploy emerging technologies that require high demands on data like 5G. Several global efforts address this problem by providing multi-tier spectrum sharing frameworks, for example, the Citizens Broadband Radio Service (CBRS) and Licensed Shared Access (LSA) models, to increase spectrum reuse. In these frameworks, the incumbent (i.e., the technology that used the spectrum exclusively in the past) has to be protected against service disruptions caused by the transmissions of the new technologies that start using the same spectrum. However, these approaches suffer from two main problems. First, spectrum re-allocation to new uses is a slow process that may take years. Second, they do not scale fast since it requires a centralized infrastructure to protect the incumbent and coordinate and grant access to the shared spectrum. As a solution, the Spectrum Collaboration Challenge (SC2) has shown that the collaborative intelligent radio networks (CIRNs) -- artificial intelligence (AI)-based autonomous wireless networks that collaborate -- can share and reuse spectrum efficiently without any coordination and with the guarantee of incumbent protection. In this article, we present the architectural design and the experimental validation of an incumbent protection system for the next generation of spectrum sharing frameworks. The proposed system is a two-step AI-based algorithm that recognizes, learns, and proactively predicts the incumbent's transmission pattern with an accuracy above 95 percent in near real time (less than 300 ms). The proposed algorithm was validated in Colosseum, the RF channel emulator built for the SC2 competition, using up to two incumbents simultaneously with different transmission patterns and sharing spectrum with up to five additional CIRNs

    Vehicle-to-Vehicle Channel Modeling and Real Time Simulator Design

    Get PDF
    corecore