414 research outputs found

    Evaluation of a Modular PET System Architecture with Synchronization over Data Links

    Full text link
    A DAQ architecture for a PET system is presented that focuses on modularity, scalability and reusability. The system defines two basic building blocks: data acquisitors and concentra- tors, which can be replicated in order to build a complete DAQ of variable size. Acquisition modules contain a scintillating crystal and either a position-sensitive photomultiplier (PSPMT) or an array of silicon photomultipliers (SiPM). The detector signals are processed by AMIC, an integrated analog front-end that generates programmable analog outputs which contain the first few statistical moments of the light distribution in the scintillator. These signals are digitized at 156.25 Msamples/s with free-run- ning ADCs and sent to an FPGA which detects single gamma events, extracts position and time information online using digital algorithms, and submits these data to a concentrator module. Concentrator modules collect single events from acquisition modules and perform coincidence detection and data aggregation. A synchronization scheme over data links is implemented that calibrates each link s latency independently, ensuring that there are no limitations on module mobility, and that the architecture is arbitrarily scalable. Prototype boards with both acquisition and concentration functionality have been built for evaluation pur- poses. The performance of a small PET system with two detectors based on continuous scintillators is presented. A synchronization error below 50 ps rms is measured, and energy resolutions of 19% and 24% and timing resolutions of 2.0 ns and 4.7 ns FWHM are obtained for PMT and SiPM photodetectors, respectively.Manuscript received June 25, 2013; revised November 06, 2013; accepted January 03, 2014. Date of publication January 29, 2014; date of current version February 06, 2014. This work was supported in part by the Spanish Ministry of Science and Innovation under CICYT Grant FIS2010-21216-C02-02.Aliaga Varea, RJ.; Herrero Bosch, V.; Monzó Ferrer, JM.; Ros García, A.; Gadea Gironés, R.; Colom Palero, RJ. (2014). Evaluation of a Modular PET System Architecture with Synchronization over Data Links. IEEE Transactions on Nuclear Science. 61(1):88-98. https://doi.org/10.1109/TNS.2014.2298399S889861

    Characterization and Test of a Data Acquisition System for PET

    Get PDF
    A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application

    Asymmetric data acquisition system for an endoscopic PET-US detector

    Get PDF
    According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data
    corecore