2,652 research outputs found

    An area-efficient 2-D convolution implementation on FPGA for space applications

    Get PDF
    The 2-D Convolution is an algorithm widely used in image and video processing. Although its computation is simple, its implementation requires a high computational power and an intensive use of memory. Field Programmable Gate Arrays (FPGA) architectures were proposed to accelerate calculations of 2-D Convolution and the use of buffers implemented on FPGAs are used to avoid direct memory access. In this paper we present an implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications. This proposed solution dramatically decreases the area needed keeping good performance, making it appropriate for embedded systems in critical space application

    Comprehensive Evaluation of OpenCL-based Convolutional Neural Network Accelerators in Xilinx and Altera FPGAs

    Get PDF
    Deep learning has significantly advanced the state of the art in artificial intelligence, gaining wide popularity from both industry and academia. Special interest is around Convolutional Neural Networks (CNN), which take inspiration from the hierarchical structure of the visual cortex, to form deep layers of convolutional operations, along with fully connected classifiers. Hardware implementations of these deep CNN architectures are challenged with memory bottlenecks that require many convolution and fully-connected layers demanding large amount of communication for parallel computation. Multi-core CPU based solutions have demonstrated their inadequacy for this problem due to the memory wall and low parallelism. Many-core GPU architectures show superior performance but they consume high power and also have memory constraints due to inconsistencies between cache and main memory. FPGA design solutions are also actively being explored, which allow implementing the memory hierarchy using embedded BlockRAM. This boosts the parallel use of shared memory elements between multiple processing units, avoiding data replicability and inconsistencies. This makes FPGAs potentially powerful solutions for real-time classification of CNNs. Both Altera and Xilinx have adopted OpenCL co-design framework from GPU for FPGA designs as a pseudo-automatic development solution. In this paper, a comprehensive evaluation and comparison of Altera and Xilinx OpenCL frameworks for a 5-layer deep CNN is presented. Hardware resources, temporal performance and the OpenCL architecture for CNNs are discussed. Xilinx demonstrates faster synthesis, better FPGA resource utilization and more compact boards. Altera provides multi-platforms tools, mature design community and better execution times

    NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps

    Get PDF
    Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though Graphical Processing Units (GPUs) are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1x1 to 7x7. NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq FPGA platform and present results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Post-synthesis simulations using Mentor Modelsim in a 28nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the MAC units, and achieves a power efficiency of over 3TOp/s/W in a core area of 6.3mm2^2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real time interactive demonstrations
    corecore