2,874 research outputs found

    ARC 2014: a multidimensional FPGA-based parallel DBSCAN architecture

    Get PDF

    Separation logic for high-level synthesis

    Get PDF
    High-level synthesis (HLS) promises a significant shortening of the digital hardware design cycle by raising the abstraction level of the design entry to high-level languages such as C/C++. However, applications using dynamic, pointer-based data structures remain difficult to implement well, yet such constructs are widely used in software. Automated optimisations that leverage the memory bandwidth of dedicated hardware implementations by distributing the application data over separate on-chip memories and parallelise the implementation are often ineffective in the presence of dynamic data structures, due to the lack of an automated analysis that disambiguates pointer-based memory accesses. This thesis takes a step towards closing this gap. We explore recent advances in separation logic, a rigorous mathematical framework that enables formal reasoning about the memory access of heap-manipulating programs. We develop a static analysis that automatically splits heap-allocated data structures into provably disjoint regions. Our algorithm focuses on dynamic data structures accessed in loops and is accompanied by automated source-to-source transformations which enable loop parallelisation and physical memory partitioning by off-the-shelf HLS tools. We then extend the scope of our technique to pointer-based memory-intensive implementations that require access to an off-chip memory. The extended HLS design aid generates parallel on-chip multi-cache architectures. It uses the disjointness property of memory accesses to support non-overlapping memory regions by private caches. It also identifies regions which are shared after parallelisation and which are supported by parallel caches with a coherency mechanism and synchronisation, resulting in automatically specialised memory systems. We show up to 15x acceleration from heap partitioning, parallelisation and the insertion of the custom cache system in demonstrably practical applications.Open Acces

    Refactoring intermediately executed code to reduce cache capacity misses

    Get PDF
    The growing memory wall requires that more attention is given to the data cache behavior of programs. In this paper, attention is given to the capacity misses i.e. the misses that occur because the cache size is smaller than the data footprint between the use and the reuse of the same data. The data footprint is measured with the reuse distance metric, by counting the distinct memory locations accessed between use and reuse. For reuse distances larger than the cache size, the associated code needs to be refactored in a way that reduces the reuse distance to below the cache size so that the capacity misses are eliminated. In a number of simple loops, the reuse distance can be calculated analytically. However, in most cases profiling is needed to pinpoint the areas where the program needs to be transformed for better data locality. This is achieved by the reuse distance visualizer, RDVIS, which shows the intermediately executed code for critical data reuses. In addition, another tool, SLO, annotates the source program with suggestions for locality ptimization. Both tools have been used to analyze and to refactor a number of SPEC2000 benchmark programs with very positive results
    • …
    corecore