1,974 research outputs found

    BrainFrame: A node-level heterogeneous accelerator platform for neuron simulations

    Full text link
    Objective: The advent of High-Performance Computing (HPC) in recent years has led to its increasing use in brain study through computational models. The scale and complexity of such models are constantly increasing, leading to challenging computational requirements. Even though modern HPC platforms can often deal with such challenges, the vast diversity of the modeling field does not permit for a single acceleration (or homogeneous) platform to effectively address the complete array of modeling requirements. Approach: In this paper we propose and build BrainFrame, a heterogeneous acceleration platform, incorporating three distinct acceleration technologies, a Dataflow Engine, a Xeon Phi and a GP-GPU. The PyNN framework is also integrated into the platform. As a challenging proof of concept, we analyze the performance of BrainFrame on different instances of a state-of-the-art neuron model, modeling the Inferior- Olivary Nucleus using a biophysically-meaningful, extended Hodgkin-Huxley representation. The model instances take into account not only the neuronal- network dimensions but also different network-connectivity circumstances that can drastically change application workload characteristics. Main results: The synthetic approach of three HPC technologies demonstrated that BrainFrame is better able to cope with the modeling diversity encountered. Our performance analysis shows clearly that the model directly affect performance and all three technologies are required to cope with all the model use cases.Comment: 16 pages, 18 figures, 5 table

    An Automated Design-flow for FPGA-based Sequential Simulation

    Get PDF
    In this paper we describe the automated design flow that will transform and map a given homogeneous or heterogeneous hardware design into an FPGA that performs a cycle accurate simulation. The flow replaces the required manually performed transformation and can be embedded in existing standard synthesis flows. Compared to the earlier manually translated designs, this automated flow resulted in a reduced number of FPGA hardware resources and higher simulation frequencies. The implementation of the complete design flow is work in progress.\u

    Fast, Accurate and Detailed NoC Simulations

    Get PDF
    Network-on-Chip (NoC) architectures have a wide variety of parameters that can be adapted to the designer's requirements. Fast exploration of this parameter space is only possible at a high-level and several methods have been proposed. Cycle and bit accurate simulation is necessary when the actual router's RTL description needs to be evaluated and verified. However, extensive simulation of the NoC architecture with cycle and bit accuracy is prohibitively time consuming. In this paper we describe a simulation method to simulate large parallel homogeneous and heterogeneous network-on-chips on a single FPGA. The method is especially suitable for parallel systems where lengthy cycle and bit accurate simulations are required. As a case study, we use a NoC that was modelled and simulated in SystemC. We simulate the same NoC on the described FPGA simulator. This enables us to observe the NoC behavior under a large variety of traffic patterns. Compared with the SystemC simulation we achieved a speed-up of 80-300, without compromising the cycle and bit level accuracy

    P4-enabled Smart NIC:Enabling Sliceable and Service-Driven Optical Data Centres

    Get PDF

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201
    • ā€¦
    corecore