266 research outputs found

    Reconfigurable Vision Processing for Player Tracking in Indoor Sports

    Get PDF
    Ibraheem OW. Reconfigurable Vision Processing for Player Tracking in Indoor Sports. Bielefeld: Universität Bielefeld; 2018.Over the past decade, there has been an increasing growth of using vision-based systems for tracking players in sports. The tracking results are used to evaluate and enhance the performance of the players as well as to provide detailed information (e.g., on the players and team performance) to viewers. Player tracking using vision systems is a very challenging task due to the nature of sports games, which includes severe and frequent interactions (e.g., occlusions) between the players. Additionally, these vision systems have high computational demands since they require processing of a huge amount of video data based on the utilization of multiple cameras with high resolution and high frame rate. As a result, most of the existing systems based on general-purpose computers are not able to perform online real-time player tracking, but track the players offline using pre-recorded video files, limiting, e.g., direct feedback on the player performance during the game. In this thesis, a reconfigurable vision-based system for automatically tracking the players in indoor sports is presented. The proposed system targets player tracking for basketball and handball games. It processes the incoming video streams from GigE Vision cameras, achieving online real-time player tracking. The teams are identified and the players are detected based on the colors of their jerseys, using background subtraction, color thresholding, and graph clustering techniques. Moreover, the trackingby-detection approach is used to realize player tracking. FPGA technology is used to handle the compute-intensive vision processing tasks by implementing the video acquisition, video preprocessing, player segmentation, and team identification & player detection in hardware, while the less compute-intensive player tracking is performed on the CPU of a host-PC. Player detection and tracking are evaluated using basketball and handball datasets. The results of this work show that the maximum achieved frame rate for the FPGA implementation is 96.7 fps using a Xilinx Virtex-4 FPGA and 136.4 fps using a Virtex-7 device. The player tracking requires an average processing time of 2.53 ms per frame in a host-PC equipped with a 2.93 GHz Intel i7-870 CPU. As a result, the proposed reconfigurable system supports a maximum frame rate of 77.6 fps using two GigE Vision cameras with a resolution of 1392x1040 pixels each. Using the FPGA implementation, a speedup by a factor of 15.5 is achieved compared to an OpenCV-based software implementation in a host-PC. Additionally, the results show a high accuracy for player tracking. In particular, the achieved average precision and recall for player detection are up to 84.02% and 96.6%, respectively. For player tracking, the achieved average precision and recall are up to 94.85% and 94.72%, respectively. Furthermore, the proposed reconfigurable system achieves a 2.4 times higher performance per Watt than a software-based implementation (without FPGA support) for player tracking in a host-PC.Acknowledgments: I (Omar W. Ibraheem) would like to thank the German Academic Exchange Service (DAAD), the Congnitronics and Sensor Systems research group, and the Cluster of Excellence Cognitive Interaction Technology ‘CITEC’ (EXC 277) (Bielefeld University) not only for funding the work in this thesis, but also for all the help and support they gave to successfully finish my thesis

    Occupancy Analysis of the Outdoor Football Fields

    Get PDF

    A technology platform for automatic high-level tennis game analysis

    Get PDF
    Sports video research is a popular topic that has been applied to many prominent sports for a large spectrum of applications. In this paper we introduce a technology platform which has been developed for the tennis context, able to extract action sequences and provide support to coaches for players performance analysis during training and official matches. The system consists of an hardware architecture, devised to acquire data in the tennis context and for the specific domain requirements, and a number of processing modules which are able to track both the ball and the players, to extract semantic information from their interactions and automatically annotate video sequences. The aim of this paper is to demonstrate that the proposed combination of hardware and software modules is able to extract 3D ball trajectories robust enough to evaluate ball changes of direction recognizing serves, strokes and bounces. Starting from these information, a finite state machine based decision process can be employed to evaluate the score of each action of the game. The entire platform has been tested in real experiments during both training sessions and matches, and results show that automatic annotation of key events along with 3D positions and scores can be used to support coaches in the extraction of valuable information about players intentions and behaviours

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Taking the Temperature of Sports Arenas:Automatic Analysis of People

    Get PDF

    FPGA in image processing supported by IOPT-Flow

    Get PDF
    Image processing is widely used in the most diverse industries. One of the tools widely used to perform image processing is the OpenCV library. Although the implementation of image processing algorithms can be made in software, it is also possible to implement image processing algorithms in hardware. In some cases, the execution time can be smaller than the execution time achieved in software. This work main goal is to evaluate the use of VHDL, DS-Pnets, and IOPT-Flow to develop image processing systems in hardware, in FPGA-based platforms. To enable it, a validation platform was developed. A set of image processing algorithms were specified, during this work, in VHDL and/or in DS-Pnets. These were validated using the IOPT-Flow validation tool and/or the Xilinx ISE Simulator. The automatic VHDL code generator from IOPT-Flow framework was used to translate DS-Pnet models into the implementation code. The FPGA-based implementations were compared with software implementations, supported by the OpenCV library. The created DS-Pnet models were added into a folder of the IOPT-Flow editor, to create an image processing library. It was possible to conclude that the DS-Pnets and their associated tools, IOPT-Flow tools, support the development of image processing systems. These tools, which simplify the development of image processing systems, are available online at http://gres.uninova.pt/iopt-flow/
    corecore