64 research outputs found

    FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    Get PDF
    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application

    Range-resolved optical interferometric signal processing

    Get PDF
    The ability to identify the range of an interferometric signal is very useful in interferometry, allowing the suppression of parasitic signal components or permitting several signal sources to be multiplexed. Two novel range-resolved optical interferometric signal processing techniques, employing very different working principles, are theoretically described and experimentally demonstrated in this thesis. The first technique is based on code-division multiplexing (CDM), which is combined with single-sideband signal processing, resulting in a technique that, unlike prior work, only uses a single, regular electro-optic phase modulator to perform both range-based signal identification and interferometric phase evaluation. The second approach uses sinusoidal optical frequency modulation (SFM), induced by injection current modulation of a diode laser, to introduce range-dependent carriers to determine phase signals in interferometers of non-zero optical path difference. Here, a key innovation is the application of a smooth window function, which, when used together with a time-variant demodulation approach, allows optical path lengths of constituent interferometers to be continuously and independently variable, subject to a minimum separation, greatly increasing the practicality of the approach. Both techniques are applied to fibre segment interferometry, where fibre segments that act as long-gauge length interferometric sensors are formed between pairs of partial in-fibre reflectors. Using a regular single-mode laser diode, six fibre segments of length 12.5 cm are multiplexed with a quadrature bandwidth of 43 kHz and a phase noise floor of 0.19 mrad · Hz -0.5 using the SFM technique. In contrast, the 16.5 m spatial resolution achieved with the CDM technique points towards its applicability in medium-to-long range sensing. The SFM technique also allows high linearity, with cyclic errors as low as 1 mrad demonstrated, and with modelling indicating further room for improvement. Additionally, in an industrial measurement, the SFM technique is applied to single-beam, multi-surface vibrometry, allowing simultaneous differential measurements between two vibrating surfaces

    Real-Time Spatially Resolving Phasemeter for LISA Pathfinder

    Get PDF

    Wave Front Sensing and Correction Using Spatial Modulation and Digitally Enhanced Heterodyne Interferometry

    Get PDF
    This thesis is about light. Specifically it explores a new way sensing the spatial distribution of amplitude and phase across the wavefront of a propagating laser. It uses spatial light modulators to tag spatially distinct regions of the beam, a single diode to collect the resulting light and digitally enhanced heterodyne interferometry to decode the phase and amplitude information across the wavefront. It also demonstrates how using these methods can be used to maximise the transmission of light through a cavity and shows how minor aberrations in the beam can be corrected in real time. Finally it demonstrate the preferential transmission of higher order modes. Wavefront sensing is becoming increasingly important as the demands on modern interferometers increase. Land based systems such as the Laser Interferometer Gravitational-Wave Observatory (LIGO) use it to maximise the amount of power in the arm cavities during operation and reduce noise, while space based missions such as the Laser Interferometer Space Antenna (LISA) will use it to align distant partner satellites and ensure that the maximum amount of signal is exchanged. Conventionally wavefront sensing is accomplished using either Hartmann Sensors or multi-element diodes. These are well proven and very effective techniques but bring with them a number of well understood limitations. Critically, while they can map a wavefront in detail, they are strictly sensors and can do nothing to correct it. Our new technique is based on a single-element photo-diode and the spatial modulation of the local oscillator beam. We encode orthogonal codes spatially onto this light and use these to separate the phases and amplitudes of different parts of the signal beam in post processing. This technique shifts complexity from the optical hardware into deterministic digital signal processing. Notably, the use of a single analogue channel (photo-diode, connections and analogue to digital converter) avoids some low-frequency error sources. The technique can also sense the wavefront phase at many points, limited only by the number of actuators on the spatial light modulator in contrast to the standard 4 points from a quadrant photo-diode. For ground-based systems, our technique could be used to identify and eliminate higher-order modes, while, for space-based systems, it provides a measure of wavefront tilt which is less susceptible to low frequency noise. In the future it may be possible to couple the technique with an artificial intelligence engine to automate more of the beam alignment process in arrangements involving multiple cavities, preferentially select (or reject) specific higher order modes and start to reduce the burgeoning requirements for human control of these complex instruments

    Heterodyne laser interferometers for the dimensional control of large ring-lasers

    Get PDF
    We present here the design, implementation and characterization of a heterodyne laser interferometer for sub-nanometer displacement metrology. The analyses and experimental activity reported in this thesis are part of a wider study, aimed to the realization of an external metrology truss for the stabilization of large opto-mechanical structures. The purpose is to monitor the three-dimensional shape of an array of large ring-lasers, planned for future General Relativity experiments. Reaching the required 10^-11m displacement uncertainty over 7m distances and several days integration periods is an challenging task. The proposed solution consists of a non-polarizing Mach-Zehnder configuration, featuring an optical cancelable circuit and a holey folding mirror, which makes possible to place the gauge in between the fiducial points which define the distance of interest. We present here the instrument working principle and the method for online phase reconstruction, as well as the complete hardware configuration used. The several sources of noise are investigated mathematically and, whenever possible, identified experimentally. The displacement gauge was tested up to 300min of continuous data acquisition, showing nanometer level performances down to 100mHz. Air index variations and mechanical instabilities are currently the main limiting factors at lower frequencies. The present experiment has brought into light many technical issues which will constitute precious lessons learned for the future improvements of the system

    Single-element dual-interferometer for precision inertial sensing

    Get PDF
    Tracking moving masses in several degrees of freedom with high precision and large dynamic range is a central aspect in many current and future gravitational physics experiments. Laser interferometers have been established as one of the tools of choice for such measurement schemes. Using sinusoidal phase modulation homodyne interferometry allows a drastic reduction of the complexity of the optical setup, a key limitation of multi-channel interferometry. By shifting the complexity of the setup to the signal processing stage, these methods enable devices with a size and weight not feasible using conventional techniques. In this paper we present the design of a novel sensor topology based on deep frequency modulation interferometry: the self-referenced single-element dual-interferometer (SEDI) inertial sensor, which takes simplification one step further by accommodating two interferometers in one optic. Using a combination of computer models and analytical methods we show that an inertial sensor with sub-picometer precision for frequencies above 10 mHz, in a package of a few cubic inches, seems feasible with our approach. Moreover we show that by combining two of these devices it is possible to reach sub-picometer precision down to 2 mHz. In combination with the given compactness, this makes the SEDI sensor a promising approach for applications in high precision inertial sensing for both next-generation space-based gravity missions employing drag-free control, and ground-based experiments employing inertial isolation systems with optical readout. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Electro-optic frequency combs and their applications in high-precision metrology and high-speed communications

    Get PDF
    Optische Frequenzkämme haben sich in den letzten Jahren zu einem vielseitigen Werkzeug im Bereich der Optik und Photonik entwickelt. Sie ermöglichen den Zugang zu einer Vielzahl von schmalbandigen Spektrallinien, die einen breiten Spektralbereich abdecken und gleichzeitig hochgenau definierte Frequenzen aufweisen. Dadurch wurden Experimente in vielfältigen Anwendungsgebieten ermöglicht, zum Beispiel in den Bereichen optischer Atomuhren, der Präzisionsspektroskopie, der Frequenzmesstechnik, der Distanzmesstechnik und der optischen Telekommunikation. Allerdings umfassen übliche Frequenzkammquellen und die jeweiligen Laboraufbauten typischerweise komplexe opto-elektronische und opto-mechanische Anordnungen, welche aufgrund von Baugröße und fehlender Robustheit gegenüber Umwelteinflüssen wie Temperatur bislang kaum Einzug in breitere industrielle Anwendungen gefunden haben. Diese Arbeit legt deshalb ein besonderes Augenmerk auf die praktische Nutzbarkeit von frequenzkamm-basierten Systemen in industriellen Anwendungen. Im Fokus stehen dabei Robustheit, Kompaktheit und flexible Anpassungsmöglichkeiten an die jeweilige Anwendung. Das bezieht sich sowohl auf die Frequenzkammquellen selbst, als auch auf die zugehörigen anwendungsspezifischen optischen Systeme, in welchen die Frequenzkämme genutzt werden. In der vorliegenden Arbeit wird das Potential elektro-optischer Frequenzkämme in der optischen Messtechnik sowie der optischen Kommunikationstechnik anhand ausgewählter experimenteller Demonstrationen untersucht. Als Mittel zur Realisierung miniaturisierter optischer Systeme mit einem Flächenbedarf von wenigen Quadratmillimetern wird die photonische Integration in Silizium verfolgt. Ein integriertes System zur Frequenzkamm-basierten Distanzmessung sowie integriert-optische Frequenzkammquellen werden demonstriert. Die Erzeugung von Frequenzkämmen durch Dauerstrichlaser in Kombination mit elektro-optischen Modulatoren ist dabei ein besonders vielversprechender Ansatz. Zwar werden dabei üblicherweise kleinere optische Bandbreiten erzielt als bei der weitverbreiteten Frequenzkammerzeugung durch modengekoppelte Ultrakurzpulslaser oder durch Kerr-Nichtlinearitäten, aber es bieten sich andere wertvolle Vorteile an. So erlaubt die elektro-optische Kammerzeugung beispielsweise eine nahezu freie Wahl der Mittenfrequenz durch Auswahl oder Einstellung des Dauerstrichlasers. Durch den Einsatz verschiedener Laser können sogar gleichzeitig mehrere Frequenzkämme unterschiedlicher Mittenfrequenz erzeugt werden, was sich in verschiedenen Anwendungen vorteilhaft ausnutzen lässt. Dies wird in dieser Arbeit anhand zweier Beispiele aus der optischen Messtechnik demonstriert, siehe Kapitel 3 und Kapitel 5. Der Kammlinienabstand ist bei elektro-optisch erzeugten Kämmen definiert durch die elektronisch erzeugte Modulationsfrequenz. Das bietet mehrere Vorteile: Der Linienabstand ist frei einstellbar, sehr stabil, und einfach rückführbar auf einen Frequenzstandard. Der Verzicht auf einen optischen Resonator macht die Kammquelle robust gegenüber Umwelteinflüssen wie z.B. Vibration. Zudem machen Fortschritte bei der Entwicklung von hochintegrierten optischen Modulatoren auf Silizium eine Umsetzung der Frequenzkammquellen in Siliziumphotonik möglich. Die erste derartige Komponente und deren Anwendung in der optischen Telekommunikation wird in Kapitel 6 vorgestellt. Photonische Integration in Silizium bietet außerdem das Potential, miniaturisierte optische Systeme mit vielfältiger Funktionalität zu realisieren. Solche Systeme zeichnen sich durch extrem kleinen Platzbedarf, Kompatibilität mit hochentwickelten und massentauglichen Fertigungstechniken aus der CMOS-(Complementary Metal-Oxide-Semiconductor)-Mikroelektronik und durch die Möglichkeit zur Kointegration elektronischer Schaltungen auf demselben Chip aus. Die hohe Integrationsdichte eröffnet die Perspektive, optische Systeme z.B. für Sensorik tief in industriellen Maschinen zu integrieren. Kapitel 1 gibt eine kurze Einführung in optische Frequenzkämme und deren vielfältige Anwendungen in Wissenschaft und Technik. Der Stand der Technik zu unterschiedlichen Ansätzen zur Frequenzkammerzeugung und deren jeweiligen Eigenschaften werden diskutiert, und es werden die Vorzüge der in dieser Arbeit verwendeten elektro-optischen Frequenzkämme erläutert. Des Weiteren wird die Integration photonischer Systeme und Bauelemente auf Silizium vorgestellt. Schließlich werden die sich ergebenden Vorteile bei der Anwendung in optischer Messtechnik und optischer Telekommunikation diskutiert. Kapitel 2 fasst die physikalischen Grundlagen der Arbeit zusammen. Die Funktionsprinzipien elektro-optischer Modulatoren werden beschrieben sowie deren Anwendung zur Erzeugung von Frequenzkämmen. Zusätzlich wird das Konzept sogenannter synthetischer Wellenlängen eingeführt, welches in der optischen Distanzmesstechnik Anwendung findet. Kapitel 3 beschreibt ein Prinzip zur Distanzmessung mittels zweier elektro-optischer Frequenzkämme zur kontaktlosen Vermessung technischer Objekte. Die Leistungsfähigkeit des Ansatzes wird durch eine Erfassung von ausgedehnten Oberflächenprofilen in Form von Punktwolken demonstriert, wobei eine verhältnismäßig kurze Messzeit von 9.1 µs pro Punkt ausreichend ist. Dabei wird der faseroptisch angebundene Sensorkopf von einer Koordinatenmessmaschine über die Oberfläche bewegt. Durch Temperaturschwankungen im faser-optischen Aufbau ausgelöste Messabweichungen werden durch die Messung mit Lasern unterschiedlicher Emissionsfrequenz kompensiert. Kapitel 4 beschreibt ein integriert-optisches System auf Silizium zur frequenzkamm-basierten Distanzmessung. Das System beinhaltet das zum Heterodynempfang genutzte Interferometer inklusive eines einstellbaren Leistungsteilers sowie der Photodetektoren. Der Platzbedarf aller Komponenten auf dem Siliziumchip beträgt 0.25 mm2^{2}. Der Chip wird in dem in Kapitel 3 eingeführten Messverfahren eingesetzt, wobei Distanzmessungen mit Root-mean-square-Fehlern von 3.2 µm und 14 µs Erfassungszeit demonstriert werden. Kapitel 5 stellt ein Distanzmesssystem vor, bei welchem eine grobauflösende Phasenlaufzeitmessung mit großem Eindeutigkeitsbereich mit einer interferometrischen Distanzmessung mit synthetischen Wellenlängen zur Verfeinerung der Messgenauigkeit kombiniert wird. Die durch vier Laser erzeugten synthetischen Wellenlängen bzw. die Frequenzabstände der Laser werden zeitgleich zur Distanzmessung mittels eines auf elektro-optischer Modulation basierenden Verfahrens vermessen. Durch diese Referenzierung wird der Einsatz freilaufender Laser ohne Wellenlängenstabilisierung ermöglicht. Es werden Messraten von 300 Hz und Genauigkeiten im Mikrometerbereich erreicht. Kapitel 6 beschreibt die weltweit erste Demonstration elektro-optischer Frequenzkammquellen auf Silizium und die hierzu genutzte hybride Materialplattform aus Silizium und organischen Materialien (Silicon-Organic Hybrid, SOH). Spektral flache Frequenzkämme mit 7 Linien innerhalb von 2 dB und Linienabständen von 25 GHz und 40 GHz werden erzeugt. Die praktische Anwendbarkeit solcher Frequenzkämme wird durch eine Reihe von Datenübertragungexperimenten demonstriert. Die einzelnen Kammlinien dienen als Träger für Daten in einem Wellenlängenmultiplex-System, womit eine spektral effiziente Datenübertragung mit Datenraten von über 1 Tbit/s über Distanzen von bis zu 300 km demonstriert wird. Kapitel 7 fasst die Ergebnisse der vorliegenden Arbeit zusammen und gibt einen Ausblick auf die Möglichkeiten, die sich durch weiterentwickelte Kammquellen und fortschreitende Möglichkeiten in der photonischen Integration ergeben

    Multi-link laser interferometer architecture for a next generation GRACE

    No full text
    When GRACE Follow-On (GRACE-FO) launches, it will be the first time a laser interferometer has been used to measure displacement between spacecraft. In the future, interspacecraft laser interferometry will be used in LISA, a space-based gravitational wave detector, that requires the change in separation between three spacecraft to be measured with a resolution of 1 pm/rtHz. The sensitivity of an interspacecraft interferometer is potentially limited by spacecraft degrees-of-freedom, such as rotation, coupling into the interspacecraft displacement measurement. GRACE-FO and LISA therefore have strict requirements placed on the positioning and alignment of the interferometers during spacecraft integration. Decades of work has gone into adapting traditionally lab-based techniques for these space applications. As an example, GRACE-FO stops rotation of the two spacecraft from coupling into displacement using the triple mirror assembly. The triple mirror assembly is a precision optic, comprised of three mirrors, that function as a retroreflector. Provided the triple mirror assembly vertex coincides with the spacecraft centre of mass, any spacecraft rotation will asymmetrically lengthen and shorten the optical pathlengths of the incoming and outgoing beams, ensuring that the round trip pathlength between the spacecraft is unaffected. To achieve the required displacement sensitivity, the triple mirror assembly vertex must be positioned within 0.5 mm of the spacecraft centre of mass, making spacecraft integration challenging. In this thesis a new, all-fibre interferometer architecture is presented that aims to simplify the positioning and alignment of space-based interferometers. Using multiple interspacecraft link measurements and high-speed signal processing the interspacecraft displacement is synthesised in post-processing. The multi-link interferometry concept is similar to the triple mirror assembly's symmetric suppression of rotation, however, since the rotation-to-pathlength cancellation is performed in post-processing, the weighting of each interspacecraft link measurement can be optimised to completely cancel any rotation coupled error. Consequently, any uncertainty in the positioning of the multi-link interferometer during spacecraft integration can be corrected for in post-processing. The strict hardware integration requirements of current interferometers can therefore be relaxed, enabling a new class of simpler, cheaper missions. The multi-link concept is evaluated as a potential interferometer architecture for a next generation GRACE mission. The multi-link GRACE concept uses several fibre coupled optical heads on each spacecraft to form multiple interspacecraft links between spacecraft. To cancel rotation coupled error from rotation of both spacecraft, 9 interspacecraft links are formed between 3 optical heads positioned on each spacecraft. Displacement is measured in both directions along each link using digitally implemented phasemeters. The 18 interspacecraft displacement measurements are then combined using artificial delays and different weights to cancel laser frequency equivalent displacement noise, fibre pathlength fluctuations and rotation coupled displacement error. The interferometer uses digitally enhanced heterodyne interferometry to multiplex the multiple link beatnotes; Time delay interferometry is used to suppress the laser frequency displacement noise and fibre fluctuations; and, to simplify the acquisition of the multiple interspacecraft links, the beam divergence out of each optical head is made sufficiently large so that links can be acquired without requiring a dedicated link acquisition strategy. Although this design simplifies the spacecraft integration and alignment it comes with some challenges: without an active link acquisition, the received power on the distant spacecraft could be considerably lower than in GRACE-FO; time delay interferometry has not been tested on a GRACE-like interferometer; and the cancellation of rotation-to-pathlength coupled error using a weighted average of multiple link measurements has not been demonstrated. Three experiments are presented in this thesis, addressing these challenges. In both GRACE-FO and LISA, phasemeters are used to track the phase of the lasers transmitted along each interspacecraft link. Tracking the phase of optical signals with low signal-to-noise ratios (SNR) is difficult because the higher, relative noise can lead to nonlinear behaviour in the phasemeter. In the first experiment presented in this thesis, the dominant noise sources -- laser frequency noise and shot noise -- that limit the phasemeter's ability to track low SNR signals are analysed. By optimising the phasemeter bandwidth to minimise the error from these two noise sources, the probability of nonlinear phasemeter behaviour is also minimised. A benchtop demonstration was performed to verify the analysis, with the bandwidth optimisation used to track a 30 fW free-running signal - the lowest power signal that has been tracked to date. The analysis indicates that subfemtowatt signals could be tracked if the laser frequency is pre-stabilised. The second experiment describes the development of a time delay interferometry combination for a GRACE-like interferometer that recovers the displacement sensitivity of the phase locked GRACE-FO interferometer. The combination could be used to test time delay interferometry on GRACE-FO as part of the LISA Experience On Grace OpticalPayload (LEGOP) project. It also demonstrates time delay interferometry could be used on a GRACE-like interferometer for laser frequency displacement noise suppression. The proposed test uses a tone assisted time delay interferometric ranging (TDIR) algorithm to determine the delays required to suppress the displacement noise due to one laser in the displacement measurement between the GRACE spacecraft. Under simulated GRACEFO conditions, the tone assisted TDIR algorithm was used to suppress the laser frequency equivalent displacement noise by 8 orders of magnitude. This was below the residual laser frequency displacement noise requirement on GRACE-FO of 20 nm/rtHz. An experimental test of the algorithm demonstrated the capabilities of the proposed algorithm in the presence of large path length fluctuations, a macroscopic optical delay and different electronic delays. The third experiment tested the multi-link GRACE architecture. In the benchtop experiment a local spacecraft with 3 optical heads was modeled. Pitch and yaw of the local spacecraft were emulated using the tip and tilt actuators on a piezo-electric steering mirror. The displacement was measured along 3 links formed between the local optical heads and a single distant spacecraft optical head. Using a weighted average of the 3 link measurements, rotation-to-pathlength coupled error from the simulated pitch and yaw of the local spacecraft were suppressed by up to 18 dB. In addition to spacecraft rotation, tones were injected to model laser frequency noise, fibre uctuations and an `interspacecraft'displacement signal. The laser noise, fibre noise and rotation-to-pathlength noise were all suppressed down to the 1 nm/rtHz measurement noise floor without affecting the measurement of the `interspacecraft' displacement signal. The results of the three experiments, along with a prediction of the displacement sensitivity in a multi-link GRACE, verify the feasibility of the multi-link architecture. More testing and development is needed however before a multi-link GRACE can be realised, with a number of these tests outlined in the discussion

    NASA Tech Briefs, May 2012

    Get PDF
    Topics covered include: An "Inefficient Fin" Non-Dimensional Parameter to Measure Gas Temperatures Efficiently; On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz; Software to Control and Monitor Gas Streams; Miniaturized Laser Heterodyne Radiometer (LHR) for Measurements of Greenhouse Gases in the Atmospheric Column; Anomaly Detection in Test Equipment via Sliding Mode Observers; Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems; Goldstone Solar System Radar Waveform Generator; Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System; Iridium Interfacial Stack - IrIS; Downsampling Photodetector Array with Windowing; Optical Phase Recovery and Locking in a PPM Laser Communication Link; High-Speed Edge-Detecting Line Scan Smart Camera; Optical Communications Channel Combiner; Development of Thermal Infrared Sensor to Supplement Operational Land Imager; Amplitude-Stabilized Oscillator for a Capacitance-Probe Electrometer; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse; Predictive Sea State Estimation for Automated Ride Control and Handling - PSSEARCH; LEGION: Lightweight Expandable Group of Independently Operating Nodes; Real-Time Projection to Verify Plan Success During Execution; Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data; Web-Based Customizable Viewer for Mars Network Overflight Opportunities; Fabrication of a Cryogenic Terahertz Emitter for Bolometer Focal Plane Calibrations; Fabrication of an Absorber-Coupled MKID Detector; Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays; Method of Bonding Optical Elements with Near-Zero Displacement; Free-Mass and Interface Configurations of Hammering Mechanisms; Wavefront Compensation Segmented Mirror Sensing and Control; Long-Life, Lightweight, Multi-Roller Traction Drives for Planetary Vehicle Surface Exploration; Reliable Optical Pump Architecture for Highly Coherent Lasers Used in Space Metrology Applications; Electrochemical Ultracapacitors Using Graphitic Nanostacks; Improved Whole-Blood-Staining Device; Monitoring Location and Angular Orientation of a Pill; Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity; Laser Ablation Electrodynamic Ion Funnel for In Situ Mass Spectrometry on Mars; High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle; PRTs and Their Bonding for Long-Duration, Extreme-Temperature Environments; Mid- and Long-IR Broadband Quantum Well Photodetector; 3D Display Using Conjugated Multiband Bandpass Filters; Real-Time, Non-Intrusive Detection of Liquid Nitrogen in Liquid Oxygen at High Pressure and High Flow; Method to Enhance the Operation of an Optical Inspection Instrument Using Spatial Light Modulators; Dual-Compartment Inflatable Suitlock; Large-Strain Transparent Magnetoactive Polymer Nanocomposites; Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine; Time Distribution Using SpaceWire in the SCaN Testbed on ISS; and Techniques for Solution- Assisted Optical Contacting
    corecore